
173

RDeepSense: Reliable Deep Mobile Computing Models with
Uncertainty Estimations

SHUOCHAO YAO, University of Illinois Urbana Champaign
YIRAN ZHAO, University of Illinois Urbana Champaign
HUAJIE SHAO, University of Illinois Urbana Champaign
ASTON ZHANG, Amazon AI
CHAO ZHANG, University of Illinois Urbana Champaign
SHEN LI, IBM Research
TAREK ABDELZAHER, University of Illinois Urbana Champaign

Recent advances in deep learning have led various applications to unprecedented achievements, which could potentially bring
higher intelligence to a broad spectrum of mobile and ubiquitous applications. Although existing studies have demonstrated
the effectiveness and feasibility of running deep neural network inference operations on mobile and embedded devices, they
overlooked the reliability of mobile computing models. Reliability measurements such as predictive uncertainty estimations
are key factors for improving the decision accuracy and user experience. In this work, we propose RDeepSense, the first
deep learning model that provides well-calibrated uncertainty estimations for resource-constrained mobile and embedded
devices. RDeepSense enables the predictive uncertainty by adopting a tunable proper scoring rule as the training criterion
and dropout as the implicit Bayesian approximation, which theoretically proves its correctness. To reduce the computational
complexity, RDeepSense employs efficient dropout and predictive distribution estimation instead of the model ensemble or
sampling-based method for inference operations. We evaluate RDeepSense with four mobile sensing applications using Intel
Edison devices. Results show that RDeepSense can reduce around 90% of the energy consumption while producing superior
uncertainty estimations and preserving at least the same model accuracy compared with other state-of-the-art methods.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing theory, concepts and
paradigms; • Computing methodologies→Machine learning;

Additional Key Words and Phrases: Internet-of-Things, Deep Learning, Mobile Computing, Reliability, Uncertainty Estimation

ACM Reference Format:
Shuochao Yao, Yiran Zhao, Huajie Shao, Aston Zhang, Chao Zhang, Shen Li, and Tarek Abdelzaher. 2017. RDeepSense: Reliable
Deep Mobile Computing Models with Uncertainty Estimations. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 4,
Article 173 (December 2017), 26 pages. https://doi.org/10.1145/3161181

1 INTRODUCTION
Using embedded sensors to infer the surrounding physical states and context is one of the major tasks of mobile
and ubiquitous computing. Numerous mobile applications have prospered in a wide range of areas, such as

Authors’ addresses: Shuochao Yao, University of Illinois Urbana Champaign; Yiran Zhao, University of Illinois Urbana Champaign; Huajie
Shao, University of Illinois Urbana Champaign; Aston Zhang, Amazon AI; Chao Zhang, University of Illinois Urbana Champaign; Shen Li,
IBM Research; Tarek Abdelzaher, University of Illinois Urbana Champaign.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2017 Association for Computing Machinery.
2474-9567/2017/12-ART173 $15.00
https://doi.org/10.1145/3161181

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

https://doi.org/10.1145/3161181
https://doi.org/10.1145/3161181

173:2 • S. Yao et al.

health and wellbeing [3, 5, 14, 23, 28, 48, 49, 62], behavior and activity recognition [8, 9, 38, 39, 42, 52, 57], crowd
sensing [53, 54, 58, 59, 61, 63], tracking and localization [10, 24, 26, 31, 51, 60]. An important component in these
applications is a learning model that outputs target values given sensor inputs.

Rapid advancement in deep learning techniques has tempted researchers to employ deep neural networks as
the learning models in the mobile applications. These highly capable models are good at making sophisticated
mappings between unstructured data such as sensor inputs and target quantities, which can hardly be achieved
by traditional machine learning models. Specific deep learning models have been designed to fuse multiple
sensory modalities and extract temporal relationships along sensor inputs. These specifically designed models
have shown significant improvements on audio sensing [35], tracking and localization [55], human activity
recognition [13, 25, 44, 55], and user identification tasks [55].
However, the inability of treating the deep learning model more than just an incomprehensible black box

has become an important factor that hinders researchers from applying the model to mobile applications. The
complexity and uninterpretability of such models mainly result from the deep and non-linear structures [37].
Therefore researchers can hardly understand how deep neural networks derive their final predictions. This leads
to either the loss of trust in deep learning models or blind faith in deep learning models without being aware of
predictive uncertainties and error bound.

In order to explicitly output the reliability measure of deep neural network model, we aim to provide the model
with predictive uncertainties during inference. Predictive uncertainty is defined as the probability of occurrence
of the target variable conditioned on all available information. One particular approach to express predictive
uncertainty is to treat the model predictions as random variables, i.e., in the form of probability distributions
instead of point estimations [43]. In this paper, we center our discussion around this specific representation of
the uncertainty.

On one hand, although it is hard to directly interpret deep neural networks, predictive uncertainty can provide
the quantitative confidence of prediction correctness, which boosts trust and faith in deep learning models. On the
other hand, uncertainty estimation itself is crucial for scientific measurements [19, 33]. Extensive investigations
show that measurement uncertainties can impact user experiences [30, 36]. In order to monitor the uncertainties
of mobile sensing applications, the first important step is to obtain the predictive uncertainties of learning models
used in the applications, which, in our case, are deep neural network models.

However, enabling deep neural networks to provide high-quality and well-calibrated uncertainty estimations
on mobile and embedded devices poses two major challenges. One challenge is to provide a mathematically
grounded uncertainty estimations that require few changes on either the model or the optimization method.
Although mathematically grounded methods such as Bayesian approaches serves as powerful tools to estimate
predictive uncertainties [11], Bayesian neural networks are computationally expensive to train and inference
even for brawny servers, let alone mobile and embedded devices [43]. Therefore a mathematically grounded
theory under minimal model modification requirements is a must for reliable uncertainty estimations.
The other challenge is to reduce the computational burden of uncertainty estimations during inference. For

mobile and ubiquitous computing applications, although we can train the deep neural networks on brawny
servers with powerful GPUs, running inference on mobile and embedded devices is difficult due to limited energy
supplies and computational resources on such devices [56]. Illuminating studies from the machine learning
community try to provide mathematically grounded uncertainty estimations for deep neural networks, but
these methods are based either on the sampling method [17] or the ensemble method [34]. They require either
running a single stochastic neural network for multiple times or training and running multiple deterministic
neural networks. All these solutions are not resource-friendly to mobile and embedded devices. Therefore, mobile
applications call for a novel solution that theoretically guarantees the correctness of predictive uncertainties, and
at the same time consumes much less resource.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:3

In this work, we propose RDeepSense that enables predictive uncertainties with theoretically proven correctness
for mobile and ubiquitous applications. RDeepSense significantly reduces the computational overhead and
preserves at least the same model accuracy. To the best of our knowledge, this is the first deep learning model
that provides uncertainty estimations for resource-limited devices. The core of RDeepSense is the integration
of the dropout training method that interprets neural networks as Gaussian process (GP) through Bayesian
approximation [17, 45, 46] and proper scoring rules as training criterion that measure the quality of predictive
uncertainty such as log-likelihood and the Brier score [20]. Their integration can be further interpreted as the
mixture distribution of a Gaussian or categorical distribution based on latent deep Gaussian process and a deep
Gaussian process through Bayesian approximation. Firstly, RDeepSense uses a tunable proper scoring rule as
the training criterion that significantly mitigates the problem of underestimating predictive uncertainties in
deep neural networks [17]. Secondly, since dropout training can be interpreted as “geometric averaging" over
the ensemble of possible “thinned" subnetworks [2], RDeepSense applies dropout training instead of model
ensemble. It greatly reduces the computation complexity of the final neural network compared with model
ensemble. Therefore, our integrated method incurs only little computational overhead, which makes it feasible
on embedded devices for mobile applications.
Evaluations of RDeepSense use the Intel Edison computing platform [1]. We conduct mobile and ubiquitous

tasks that focus on human health and wellbeing, smart city transportation, environment monitoring, and activity
recognition. Specifically, our experiments include: 1) monitoring arterial blood pressure through photoplethys-
mogram (PPG) from fingertip [27], 2) NY city taxi commute time estimation [50], 3) gas mixture concentrations
estimation through the chemical sensor array [15], 4) and heterogeneous human activity recognition through
motion sensors [47].

We compare RDeepSense with the state-of-the-art Monte Carlo dropout method [17], ensemble method [34],
and Gaussian process. The resource consumption of Intel Edison module and final model performance such as
the accuracy and the quality of uncertainty estimations are measured for all the algorithms. RDeepSense can
reduce more than 90% of inference time and energy consumption, while obtaining the uncertainty estimations
with better quality compared with the other algorithms. The well-calibrated uncertainty estimations and resource
efficiency make RDeepSense the first choice to obtain uncertainty estimations of deep neural networks in mobile
applications.
In summary, we propose a simple yet effective and theoretically-grounded method, RDeepSense, which

empowers neural networks with well-calibrated predictive uncertainty estimations. RDeepSense is also a resource-
friendly algorithm for mobile and embedded devices that adds almost no computational overhead during model
inference.

The rest of paper is organized as follows. Section 2 introduces related works about uncertainty estimations and
deep neural networks. We describe the technical details of RDeepSense in Section 3. The evaluation is presented
in Section 4. Finally, we discuss the results in Section 5 and conclude in Section 6.

2 RELATED WORK

On one hand, reliability and uncertainty estimation is one important issue of mobile and ubiquitous computing.
A lot of works have been proposed to utilize uncertainty estimations for improving the decision accuracy and
user experience. Baumann et al. [4] make next-place predictions based on the uncertainty estimation of classifiers.
Kay et al. [29] propose a novel discrete representation of uncertainties for visualizing and user interaction.
Boukhelifa et al. [7] propose design considerations for uncertainty-aware data analytics. On the other hand, the
recent advances in deep learning techniques have motivated people to apply deep neural networks for solving
mobile and ubiquitous computing tasks. Lane et al. [35] apply deep neural networks to solve audio sensing tasks.
Castro et al. [13] predict daily activities from egocentric images using deep learning. Yao et al. [55] propose a

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:4 • S. Yao et al.

deep learning structure that fuses multiple sensor inputs and extracts time dependencies. Guan et al. [25] apply
ensembles of LSTM for activity recognition. However, uncertainty estimations of deep neural networks for mobile
and ubiquitous computing tasks is an important topic that draws less attention.

Table 1. Comparison among deep learning based predictive uncertainty estimation

Algorithm Dropout Training Proper Scoring Rules Ensemble method Obtain predictive uncertainty with single run
RDeepSense ✓ ✓ × ✓
MCDrop ✓ × × ×

SSP × ✓ ✓ ×

Recently there are some illuminating works from the machine learning community that tries to provide deep
neural networks with uncertainty estimations. Gal et al. [17] provide the first theoretical proof of the linkage
between dropout training with deep Gaussian process called MCDrop. However, the proposed method tends to
underestimate the uncertainty due to the nature of variational inference. Lakshminarayanan et al. [34] propose
a solution SSP based on proper scoring rules and ensemble methods. However, the proposed method tends to
overestimate the uncertainty on real datasets.

Since these previous works do not consider the scenario of mobile and ubiquitous computing, all these proposed
methods require the operations with high computational cost during model inference, i.e., sampling methods or
ensemble methods. These computationally intensive operations aggravate the time and energy consumption
problems in the embedded devices, which is one of the key issues of mobile and ubiquitous computing [22, 40, 41].
To the best of our knowledge, RDeepSense is the first work that provides a simple yet effective solution to

estimate the uncertainties of deep neural networks for mobile and ubiquitous computing applications. RDeepSense
uses proper scoring rules to mitigate the underestimation effect of MCDrop, and applies dropout training as
implicit ensemble to avoid the computationally intensive ensemble method used in SSP.

In order to further illustrate the main difference between RDeepSense and other two deep leaning uncertainty
estimation algorithms, MCDrop and SSP, we show the designing components of these three algorithms in Table 1.

3 RDEEPSENSE FRAMEWORK
This section elaborates on the technical details of the RDeepSense framework in three constituents. Section 3.1
introduces a simple yet effective recipe to build a fully-connected neural network with predictive uncertainty
estimations. In Section 3.2, we introduce preliminary knowledge and make the theoretical analysis of RDeepSense.
We prove that RDeepSense is a mathematically grounded method to obtain predictive uncertainty estimations. In
Section 3.3, we introduce an effective and efficient approximation for RDeepSense to obtain predictive uncertainty
estimations while running on the resource-constrained embedded devices.
For the rest of this paper, all vectors are denoted by bold lower-case letters (e.g., x and y), and matrices and

tensors are represented by bold upper-case letters (e.g., X and Y). For a column vector x, the jth element is denoted
by x[j]. For a tensor X, the t th matrix along the third axis is denoted by X· ·t , and the other slicing notations are
defined similarly. The superscript l in x(l) and X(l) denote the vector and tensor for the l th layer of the neural
network. We use calligraphic letters to denote sets (e.g., X and Y), where |X| denotes the cardinality of X.

3.1 RDeepSense components
RDeepSense is a simple and effective method that empowers fully-connected neural networks to output predictive
uncertainty estimations. There are only two steps to convert an arbitrary fully-connected neural networks into a
neural network with uncertainty estimations:
(1) Insert dropout operation to each fully-connected layer.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:5

(2) Adopt a proper scoring rule as the loss function, and emit a distribution estimation instead of a point
estimation at the output layer.

The following two subsections describe dropout training and proper scoring rules in detail.
3.1.1 Dropout training. Fully-connected neural networks can be formulated using the following equations:

y(l) = x(l)W(l) + b(l),

x(l+1) = f (l)
(
y(l)
)
,

(1)

where the notation l = 1, · · · ,L is the layer index in the fully-connected neural network. For any layer l , the
weight matrix is denoted asW(l) ∈ Rd

(l−1)×d (l) ; the bias vector is denoted as b(l) ∈ Rd (l) ; the input is denoted as
x(l) ∈ Rd

(l−1) ; and d (l) is the dimension of the l th layer. In addition, f (l) (·) is a nonlinear activation function.
However, such formulations could run into feature co-adapting and model overfitting problems. To avoid these

problems, researchers introduce the concept of dropout as a regularization method [46]. “Dropout" originally
refers to dropping out hidden and visible units in a neural network, which is mathematically equivalent to
ignoring rows of the weight matrix W(l) . Therefore, a fully-connected neural network with dropout can be
represented as follows:

z(l)[i] ∼ Bernoulli(p(l)[i]),

W̃(l) = diag
(
z(l)
)
W(l),

y(l) = x(l)W̃(l) + b(l),

x(l+1) = f (l)
(
y(l)
)
.

(2)

As shown in (2), a vector of Bernoulli variables z(l) ∈ {0, 1}d (l−1) forms a diagonal matrix which acts as a mask
to dropout the ith row of W̃(l) with probability p(l)[i] . Intuitively, the dropout operations (2) convert a traditional
(deterministic) neural network with parameters {W(l) } into a random Bayesian neural network with random
variables {W̃(l) }, which equates a neural network with a statistical model without using the Bayesian approach
explicitly. This conversion with dropout helps us to obtain predictive uncertainty estimations and avoid the
computationally intensive operations used in Bayesian approaches. The detailed analysis about the equivalence
will be discussed later.

3.1.2 Proper scoring rules. Optimizing a deep neural network requires minimizing the loss function. Therefore
the loss function plays a crucial role in designing an effective neural network. Many commonly used neural
network loss functions are proper scoring rules, such as logistic loss and hinge loss.

Scoring rules, also known as score functions, measure the quality of predictive uncertainties [20]. Assume that
pθ (y |x) is the probabilistic distribution represented by a deep neural network. The scoring rule S (pθ (y |x), (x,y))
assigns a numerical score for the quality of predictive distribution pθ (y |x) on event (x,y) ∼ q(x,y), where q(x,y)
is the true distribution of data samples. The expected scoring rule is formulated as

S (pθ (y |x),q(x,y)) =
∫

q(x,y)S (pθ (y |x), (x,y))dxdy. (3)

For a proper scoring rule, the equality in S (pθ (y |x),q(x,y)) ≥ S (q(x,y)),q(x,y)) holds if and only if pθ (y |x) =
q(x,y). Widely-adopted proper scoring rules include Log-likelihood logpθ (y |x) and Brier score −∑K

k=1 (1k (y) −

pθ (y = k |x))2.
RDeepSense employs a tunable function, the weighted sum of negative log-likelihood and mean square error

(Brier score for classification problems), which is a proper scoring rule, as the loss functions for both regression

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:6 • S. Yao et al.

and classification problems. This loss function tries to offset the effect of overestimation and underestimation
caused by negative log-likelihood and mean square error respectively, which will be analyzed and evaluated later.
For regression problems, in order to optimize the neural network with negative log-likelihood, we have to

emit a distribution estimation instead of a point estimation at the output layer. Therefore, we slightly change the
structures of neural networks. The last output layer generates both the predictive mean µ (ŷ) and the predictive
variance σ 2 (ŷ). According to the notation in (2), the output layer is represented by xL+1 =

[
µ (ŷ), σ 2 (ŷ)

]⊺
=[

y(L)[0] , softplus(y
(L)
[1])

]⊺
, where softplus function is log(1 + exp(·)) enforcing the positivity constraint on the

variance. Predictive mean µ (ŷ) and predictive variance σ 2 (ŷ) compose a Gaussian distribution N (µ (ŷ),σ 2 (ŷ)) as
the output predictive distribution of the neural network.
Then the final loss function of a regression problem, Lr , is the weighted sum of mean square error Lr e and

negative log-likelihood Lr l ,

Lr e =

N∑
n=1

(
y − µ (ŷ)

)2
+ λe

L∑
l=1
∥W(l) ∥22 ,

Lr l =

N∑
n=1

(1
2 logσ 2 (ŷ) +

1
2σ 2 (ŷ)

(
y − µ (ŷ)

)2)
+ λl

L∑
l=1
∥W(l) ∥22 ,

Lr = (1 − α) · Lr l + α · Lr e ,

(4)

where N is the number of training samples, the second term in the first two equations are the L2 regularization,
and α is a hyper-parameter.

As we will discuss in Section 3.2.3 and evaluate in Section 4.6, a larger α leads neural networks to focus more
on estimating an accurate mean value, which may underestimate the true uncertainties, while a smaller α leads
neural networks to estimate a larger variance during the optimization process, which may overestimate the true
uncertainties. Therefore, α is a hyper-parameter that makes the bias-variance tradeoff and is tuned to generate a
well-calibrated predictive uncertainty, i.e., neither underestimation nor overestimation.

For the classification problem, f (L) (·) is the softmax function that generates predictive probabilities for each
category. The final loss function of a classification problem, Lc , is the weighted sum of mean square error Lce
and negative log-likelihood Lcl ,

Lce =

N∑
n=1

K∑
k=1

(1k (y) − pθ (y = k |x))2 + λe
L∑
l=1
∥W(l) ∥22 ,

Lcl =

N∑
n=1
− logpW (ŷ = y |x) + λl

L∑
l=1
∥W(l) ∥22 ,

Lc = (1 − α) · Lcl + α · Lce ,

(5)

where N is the number of training samples, K is the number of classes, the second term in the first two equations
are the L2 regularization, and α is a hyper-parameter.
In summary, the whole neural network is optimized through a tunable proper scoring rule that maximizes

the quality of predictive uncertainties. The detailed theoretical backup and proof of the equivalence between
RDeepSense and a statistical model will be shown in Section 3.2.

3.2 Theoretical analysis: the equivalence between RDeepSense and statistical models
Uncertainty estimations are usually inferred by a statistical model, such as a gaussian process [45] and a graphical
model [32]. This section provides the theoretical bases for using RDeepSense to estimate predictive uncertainties

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:7

by proving the equivalence between the RDeepSense model and a statistical model. To achieve this goal, we first
summarize the preliminary knowledge about the equivalence between dropout training with mean square error
and a deep Gaussian process, which is proposed by Gal et al. [17] in Section 3.2.1. Then we prove the equivalence
between dropout with the proper scoring rule (log-likelihood) and a Gaussian or categorical distributions based
on latent deep Gaussian process in Section 3.2.2. Finally, in Section 3.2.3, we generalize the analysis to another
tunable proper scoring rule, weighted sum of log-likelihood and negative mean square error, which provides the
theoretical foundation for the RDeepSense.

3.2.1 Preliminary: Dropout with mean square error. Gaussian process is a powerful statistical tool that allows
us to model distribution over functions [45]. We show the detailed proof in Appendix A.1 that optimizing a
variational approximation of deep Gaussian process is equivalent to optimizing an dropout neural network based
on mean square error as the loss function, which is first discussed and proven by Gal et al. [17].

However, mean square error is not a proper scoring rule for regression problems, which cannot generate a well
calibrated uncertainty estimations. Besides, due to the mode matching nature of KL divergence, the variational
approximating usually generates a highly underestimated predictive uncertainty [6], which is also verified in our
experiments in Section 4.4. Therefore we further discuss the case of dropout training with proper scoring rules in
Section 3.2.2 and Section 3.2.3, which enables RDeepSense to provide a high quality uncertainty estimation.

3.2.2 Dropout with negative log-likelihood. We have introduced the previous work that treats a neural network
with dropout training based on mean square error loss function as a deep Gaussian process with variational
approximation. We call this method MCDrop.
However, there are two drawbacks for MCDrop. One is the underestimation of predictive distribution. Varia-

tional Bayesian used in MCDrop is known to provide underestimated posterior uncertainty, because optimizing
the KL divergence will generate a low-variance estimation to a single mode of true posterior distribution [6]. In
addition, the loss function of MCDrop is not a proper scoring rule that can help to mitigate the negative effect
of underestimation caused by the variational Bayesian method. Underestimation is not a desirable property for
mobile and ubiquitous computing applications, because it means that the deep neural network will always be
over-confident about its prediction results.
The other drawback of MCDrop is the high computational burden during uncertainty estimation. Since the

output of MCDrop is a stochastic point estimation, Monte Carlo sampling method is required to estimate the
predictive mean and variance. Therefore we need to run the whole neural network for multiple times, i.e., running
k times for k samples, to generate the predictive uncertainty. Since running time and energy consumption are
two crucial problems for mobile and ubiquitous computing applications, MCDrop is not a suitable solution for
applications running on embedded devices.

Therefore, we integrate proper scoring rules and dropout training in RDeepSense to solve the aforementioned
two drawbacks. The proper scoring rules such as log-likelihood help to reduce or even erase the underestimation
effect of MCDrop, because proper scoring rule is a score function that gives higher quality uncertainty estimations
more credits. In addition, since a neural network with proper score rule directly generates a predictive distribution
estimation instead of a point estimation, we can efficiently obtain an approximated expectation of uncertainty
estimation through dropout inference. At the same time, dropout as Bayesian approximation can provide a
equivalence between the deep neural network and a statistical model, which guarantees RDeepSense to be a
mathematically grounded uncertainty estimation method.

We show the detailed proof in Appendix A.2 that training a fully-connected neural network with dropout and
negative log-likelihood loss function is equivalent to a Gaussian or categorical distribution based on the latent
deep Gaussian process.

3.2.3 Dropout with weighted sum of negative log-likelihood and mean square error. Training a neural network
with a proper scoring rule, log-likelihood loss, should generate predictive uncertainty estimations that faithfully
reflect the probability that the prediction will happen. However, training a neural network will log-likelihood

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:8 • S. Yao et al.

loss solely could converge to a local optima that overestimates the true uncertainty empirically, which will be
shown in our evaluation Section 4.4.

The intuitive explanation for this phenomenon is straight-forward. During the early phase of training a neural
network with log-likelihood loss, it is relatively hard to generate an accurate estimation of predictive mean. Then
increasing the value of variance estimation can consistently decrease the negative log-likelihood loss with a
high probability, since there is only a logarithm term that prevents variance from increasing as shown in (4).
Therefore, the predictive uncertainty tends to favor an estimation with large variance that overestimates the true
uncertainty. As a result, although log-likelihood loss is a proper score rule that assigns more credits to predictive
uncertainties with higher quality, it usually fails to achieve a good bias-variance tradeoff during training process
in practice.

In order to achieve a well-calibrated uncertainty estimation, i.e., an estimation that neither underestimates nor
overestimates, we design a tunable proper scoring rule as the training objective function of RDeepSense. It is a
weighted sum of log-likelihood and negative mean square error controlled by a hyper-parameter α ,

(1 − α) · logpW (ŷ = y |x) − α · (ŷ − y)2. (6)

With the definition in Section 3.1.2, we can easily see that (6) is a proper scoring rule.
According to the analysis in the previous two subsections 3.2.1 and 3.2.2, we can see that RDeepSense, training

fully-connected neural network by maximizing the weighted sum of log-likelihood and negative mean square
error, is equivalent to the mixture distribution of a Gaussian or categorical distribution based on the latent deep
Gaussian process and a deep Gaussian process.

Since training solely with negative mean square error or log-likelihood tends to underestimate or overestimate
the predictive uncertainties respectively, it is easy to fine-tune the hyper-parameter α with the validation dataset.
When the predictive uncertainty is underestimated, we decrease the value α , and vice versa. The detailed analysis
of the effect of hyper-parameter α will be illustrated in Section 4.6.

3.3 RDeepSense uncertainty estimation
The previous sections prove that RDeepSense is a mathematically grounded method to estimate predictive
uncertainties for fully-connected neural networks. In this section, we show that RDeepSense can efficiently
estimate predictive uncertainties of fully-connected neural networks with only little computational overhead.
According to the analysis in Appendix A.2, the approximated predictive distribution is

q(y|x) =
∫

p (y|x,W)q(W)dW = Eq (W)

[
p (y|x,W)

]
, (7)

whereW = {W̃(l) } is the random variables generated by dropout operations at each layer.

z(l)[i] ∼ Bernoulli(p(l)[i]),

W̃(l) = diag
(
z(l)
)
W(l) .

(8)

Usually Monte Carlo estimation is used to approximate the predictive distribution q(y|x) through sampling
random variablesW ,

q(y|x) =
1
M

M∑
m=1

p (y|x,Wm). (9)

For classification, (9) is the average of categorical distribution. For regression, (9) is an average of Gaussian
distributions. If we assume thatM Gaussian distributions are independent, the resulted average distribution can

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:9

be approximated by a single Gaussian distribution according to the central limit theorem,

1
M

M∑
m=1

p (y|x,Wm) =
M∑

m=1
N (µm (x),σ 2

m (x))

= N (µ̂ (x), σ̂ 2 (x)),

µ̂ (x) =
1
M

M∑
m=1

µm (x),

σ̂ 2 (x) =
1
M

M∑
m=1

(
σ 2
m (x) + µ2m (x)

)
− µ̂2 (x).

(10)

The drawback of Monte Carlo estimation for embedded devices is its high energy and time consumptions. We
have to run the whole neural network for M times to generateM samples, which is not suitable for embedded
devices with limited resources.
Fortunately, there is a simple yet effective recipe proposed by the dropout operation that can effectively

approximate the expected output value instead of using Monte Carlo estimation [46]. During test time, the
dropout operation is changed from (2) into

W̃(l) = diag
(
p(l)
)
W(l),

y(l) = x(l)W̃(l) + b(l),

x(l+1) = f (l)
(
y(l)
)
.

(11)

Although the approximation (11) is not theoretically equivalent to the Monte Carlo estimation (10) by assuming
the zero variance of mean estimation, ∑M

m=1 µ
2
m (x) − (

∑M
m=1 µm (x))2 = 0, the proposed approximation (11) turns

to be an effective and efficient approximation during the evaluation in Section 4. In the evaluation section, we
will empirically compare the biased approximation (11) with the unbiased Monte Carlo estimation (10).

Therefore, with the approximation (11), we can directly estimate the expected predictive mean and variance of
a Gaussian distribution for regression problems and expected categorical probabilities for classification problems
by just running the neural network for a single time. This makes RDeepSense a suitable candidate for deep neural
networks with uncertainty estimations used in mobile and ubiquitous computing applications.

4 EVALUATION
In this section, we evaluate RDeepSense on four mobile and ubiquitous computing tasks. We first introduce the
experimental setup for each task, including hardware, datasets, and baseline algorithms. We then evaluate the
accuracy and the quality of uncertainty estimation. Next we evaluate the inference time and energy consumption
of all algorithms on the testing hardware. At last we evaluate and analyze the effect of hyper-parameter α in the
training objective function (6) on the model performance such as accuracy and quality of uncertainty estimation.

4.1 Testing hardware
Our testing hardware is based on Intel Edison computing platform [1]. The Intel Edison computing platform is
powered by the Intel Atom SoC dual-core CPU at 500 MHz and is equipped with 1GB memory and 4GB flash
storage. For fairness, all neural network models are run solely on CPU during evaluation for inference time and
energy consumption.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:10 • S. Yao et al.

Table 2. Statistical Information of four datasets used in evaluations

Dataset Training Size Validating Size Testing Size Mean of output Std of output Range of output
BPEst 1,281,098 26,689 26,689 88.74 25.01 [50.0, 199.93]

NYCommute 10,287,766 214,328 214,328 15.08 52.79 [0.0, 1439.5]
GasSen 2,839,933 59,166 59,166 94.56 145.16 [0.0, 533.33]
HHAR 28,314 1,686 1,686 N/A N/A {0, 1, 2, 3, 4, 5}

4.2 Evaluation tasks
We conduct four experiments related to human health and wellbeing, smart city transportation, environment
monitoring, and human activity recognition with RDeepSense and other two state-of-the-art deep learning
uncertainty measuring methods as well as a statistical model. The experimental settings of the tasks and datasets
are introduced in this subsection.
The detailed statistical information of four datasets is illustrated in Table 2
• BPEst: Cuffŋless blood pressure monitoring through photoplethysmogram. The first task is to monitor cuffŋless
blood pressure through photoplethysmogram from fingertip. The dataset is originally collected by patient
monitors at various hospitals between 2001 and 2008. Waveform signals were sampled at the frequency of
125 Hz with at least 8 bit accuracy [21]. The photoplethysmogram from fingertip (PPG) and arterial blood
pressure (ABP) signal (mmHg) is extracted by Mohamad et al. for the non-invasive cuffŋless blood pressure
monitoring task [27].1 The target of BPEst task is to infer the waveform of ABP based on the waveform of
PPG collected from fingertips. This is a more challenging task compared with estimating the upper and
lower bound of the blood pressure, which requires a more precise estimation of predictive uncertainty.
During the experiment, a learning model is trained to estimate a 2-second ABP waveform (250 samples)
based on the corresponding 2-second PPG waveform.
• NYCommute: Commute time estimation of New York City. Smart transportation is an increasingly important
task within the topic of smart city. The second task is to estimate commute time in New York City through
the pick-up time and location as well as the drop-off location. We use the yellow and green taxi trip records
within January 2017 as the training, validation, and testing dataset.2 The input of the learning model is a
vector with 5 elements, containing the standardized longitude and latitude of pick-up and drop-off location
as well as the pick-up time within a day. The output of the learning model is the expected commute time
and its corresponding uncertainty estimation.
• GasSen: Estimate dynamic gas mixtures from chemical sensors. The third task is related to the environment
monitoring. The task is to estimate real concentration of Ethylene and CO gas mixture from an array of
low-end chemical sensors. Fonollosa et al. constructed the dataset by the continuous acquisition the signals
of a sensor array with 16 chemical sensors for a duration of about 12 hours without interruption with the
sampling frequency of 100 Hz [15]. 3 Gas concentrations range from 0 − 600 parts-per-million (ppm). The
learning model is trained and tested to predict the concentration Ethylene and CO gas mixtures through
the vector of 16 sensor inputs.
• HHAR: Heterogeneous human activity recognition.. The previous three tasks are all regression tasks, but
this one is a classification task. Heterogeneous means that we are testing on a new user who has not
appeared in the training set. This dataset contains readings from two motion sensors (accelerometer and
gyroscope). Readings are recorded when users execute activities scripted in no specific order, while carrying

1https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
2http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
3https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:11

smartwatches and smartphones. The dataset contains 9 users, 6 activities (biking, sitting, standing, walking,
climbStairup, and climbStair-down), and 6 types of mobile devices [47] 4. We segment raw measurements
into 5-second samples and take Fourier transform on these samples as the input data. For future extension
to RNNs as discussed in Section 5, each sample is further divided into time intervals of length τ = 0.25s.
Then we calculate the frequency response of sensors for each time interval. The output of HHAR is one of
the 6 activities.

4.3 Baseline algorithms
We compare RDeepSense with other two state-of-the-algorithm deep learning uncertainty estimation algorithms,
RDeepSense with Monte Carlo estimation, and Gaussian process. The algorithms with deep neural network,
including RDeepSense, use the same neural network architecture. It is a 4-layer fully-connected neural network
with 500 hidden dimension.
• MCDrop: This algorithm is based on the Monte Carlo dropout as described in Section 3.2.1 [17]. Compared
with RDeepSense, the main difference is that MCDrop is not optimized by a proper scoring rule. MCDrop
requires running the neural network for multiple times to generate samples during uncertainty estimation.
Therefore we use MCDrop-k to represent MCDrop with k samples. Multiple samples, i.e., k > 1, are required
to generate a predictive uncertainty estimation. During the evaluation, we let k to be 3, 5, 10, and 20 to
evaluate the tradeoff between the quality of uncertainty estimation and the resource consumption for
MCDrop.
• SSP: This algorithm trains the neural network with proper scoring methods and uses the ensemble
method [34]. Compared with RDeepSense, the main difference is that SSP uses the ensemble method
instead of the dropout operation in each layer. SSP requires training multiple neural networks for ensemble.
Therefore we use SSP-k to represent SSP by ensemble k individual neural networks. During the evaluation,
we let k to be 1, 3, 5, and 10 to evaluate the tradeoff between the quality of uncertainty estimation and the
resource consumption for SSP.
• RDeepSense-MC: This algorithm is basically the proposed RDeepSense algorithm. The difference is that,
during the inference, RDeepSense-MC uses Monte Carlo estimation (10) instead of the efficient approxima-
tion (11) for uncertainty estimation. Therefore we use RDeepSense-MCk to present RDeepSense-MC with
k samples. During the evaluation, we let k to be 3, 5, 10, and 20 to evaluate the effectiveness and efficiency
of RDeepSense inference approximation (11) compared with the Monte Carlo estimation (10).
• GP: Gaussian process (GP) is the baseline algorithm used during the evaluation of accuracy and the quality
of uncertainty estimations, but not for the evaluations of running time and energy consumption on Edison.
The main reason is that the computation cost during model inference for GP is O (N 3), where N is the
number of data instances. This cost can be prohibitive even for moderately sized datasets on embedded
devices, such as Intel Edison. In additional, GP requires O (N 2) memory consumption during training.
Therefore we train the GP with only a proportion of dataset on a server with 128GB memory. Notice that
GP is the baseline used to illustrate the quality of uncertainty estimations generated by a statistical model,
so the size of training dataset is not the main concern.

4.4 Accuracy of prediction and quality of uncertainty estimations
In this section, we discuss the accuracy and the uncertainty estimation quality of RDeepSense compared with the
other baseline algorithms. RDeepSense is tuned with the validating dataset, and all algorithms in all experiments
are tested on the testing dataset.

4https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition

173:12 • S. Yao et al.

For three regression problems, two types of evaluation results will be illustrated and discussed. The first type of
evaluation is based on some basic measurements including mean absolute error and negative log-likelihood. The
second type of evaluation is based on the calibration curves, also known as reliability diagrams. We compute the
z% confidence interval for each testing data based on predictive mean and variance of each algorithm. Then we
measure the fraction of the testing data that falls into this confidence interval. For a well-calibrated uncertainty
estimation, the fraction of testing data that falls into the confidence interval should be similar to z%. We compute
the calibration curves with z = [10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 95%, 99%, 99.5%, 99.9%] for all three
regression problems.
For the classification problem, the calibration curve is not available. Therefore, we evaluate HHAR based on

accuracy, F1 Score, negative log-likelihood, and a new measurement called the mean entropy of false predictions.
If the entropies of false predictions are higher, the learning algorithms show more uncertainties about the false
predictions, which represents a better quality of uncertainty estimations.

Table 3. Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) for the BPEst task. Except for RDeepSense-MC20,
RDeepSense is the best-performing algorithm for NLL and is the second best-performing algorithm for MAE.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
MAE 14.18 14.93 14.64 14.44 14.32
NLL 3.46 3.49 3.47 3.46 3.45

SSP-1 SSP-3 SSP-5 SSP-10 GP
MAE 15.76 14.68 14.67 14.78 19.15
NLL 4.4 3.69 3.48 3.49 3.59

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
MAE 14.80 14.41 14.09 14.09
NLL 38.1 5.28 4.00 4.00

4.4.1 BPEst. We first compare RDeepSense with four baseline algorithms based on mean absolute error (MAE)
and negative log-likelihood (NLL), which is illustrated in Table 3, where we highlight the results of RDeepSense
and the best-performing one.
From Table 3, we can see that, except for RDeepSense-MC20, RDeepSense is the best-performing and the

second best-performing algorithm for NLL and MAE respectively, which means that RDeepSense can provide
accurate estimation with high-quality predictive uncertainty. RDeepSense-MC20 only slightly beats RDeepSense
on NLL, however RDeepSense-MC20 consumes around ×20 time and energy compared with RDeepSense. The
performance of MCDrop-k increases when k increases. Larger k means that MCDrop algorithm generates more
samples during model inference, which can provide higher-quality estimations but more resource consumptions.
MCDrop-3 provides a relatively bad result for NLL, which means MCDrop does require a number of samples
for uncertainty estimation with reasonable quality. The ensemble method used in SSP increases the prediction
performance, but it is not consistent. SSP-10 observes the performance degradation compared with SSP-5. GP
obtains a relatively large MAE. This is because GP cannot be scaled to train on the whole dataset.

The calibration curves of BPEst task is illustrated in Figure 1. These three figures show the quality of predictive
uncertainty estimations. RDeepSense generates predictive uncertainties with the highest quality. RDeepSense
even slightly out-performs the traditional statistical model, GP. As we mentioned in Section 3.2, MCDrop-k
tends to underestimate the predictive uncertainty, while SSP-k tends to overestimate the predictive uncertainty.
RDeepSense even generates predictive uncertainty with better calibration compared with RDeepSense-MCk,
which indicate the effectiveness of approximation during inference. All MCDrop-k, SSP-k, and RDeepSense-MCk
improve the quality of uncertainty estimations by increasing the value of k .

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
MCDrop−1
MCDrop−3
MCDrop−5
MCDrop−10
GP
RDeepSense

(a) The calibration curves of RDeepSense, GP, and
MCDrop-k.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
SSP−1
SSP−3
SSP−5
SSP−10
GP
RDeepSense

(b) The calibration curves of RDeepSense, GP, and
SSP-k.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
GP
RDeepSense

(c) The calibration curves of RDeepSense, GP, and
RDeepSense-MCk.

Fig. 1. The calibration curves of BPEst for RDeepSense, GP, MCDrop-k, SSP-k, and RDeepSense-MCk. MCDrop-k underesti-
mates the predictive distribution. SSP-k overestimates the predictive distribution. RDeepSense is the closest curve to the
optimal predictive distribution.

4.4.2 NYCommute. Then we compare RDeepSene with baseline algorithms for NYCommute task. The com-
parison based on Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) is shown in Table 4.

In this task, RDeepSense tends to find a balance between MAE and NLL measurements. MCDrop-k shows low
MAE and high NLL, while SSP-k shows high MAE and low NLL. MCDrop-k tries to minimize the mean square
error, while SSP-k tries to minimize the negative log-likelihood. Therefore, MCDrop-k focuses more on the mean
of predictive distribution, and SSP-k focuses more on the overall likelihood. RDeepSense combines two objective
functions, mean square error and negative log-likelihood, which tries to find a balance point between these
two. Still, due to the scalability problem, GP obtains a relatively larger MAE. Compared with RDeepSense-MCk,
RDeepSense achieve a good performance on both MAE and NLL. Only RDeepSense-MC20 shows the same
performance on the NLL measurement.

The calibration curves of NYCommute task is illustrated in Figure 2. Both MCDrop-k and SSP-k fail to generate
high-quality uncertainty estimations by either underestimating or overestimating the predictive uncertainties.
However, RDeepSense can still provide uncertainty estimations with good quality, which outperforms GP with a
significant margin. Compared with RDeepSense-MCk, RDeepSense shows similar performance on generating
well-calibrated predictive uncertainties, which shows that the approximation (11) works well in practice.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:14 • S. Yao et al.

Table 4. Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) for the NYCommute task.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
MAE 5.64 6.10 6.04 5.99 5.96
NLL 7.7 7.85 7.81 7.73 7.7

SSP-1 SSP-3 SSP-5 SSP-10 GP
MAE 8.15 7.90 7.51 7.03 11.84
NLL 4.86 4.67 4.84 4.81 7.46

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
MAE 5.69 5.64 5.61 5.61
NLL 19995.6 1335.73 640.35 640.35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
MCDrop−1
MCDrop−3
MCDrop−5
MCDrop−10
GP
RDeepSense

(a) The calibration curves of RDeepSense, GP, and
MCDrop-k.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
SSP−1
SSP−3
SSP−5
SSP−10
GP
RDeepSense

(b) The calibration curves of RDeepSense, GP, and
SSP-k.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
GP
RDeepSense

(c) The calibration curves of RDeepSense, GP, and
RDeepSense-MCk.

Fig. 2. The calibration curves of NYCommute for RDeepSense, GP, MCDrop-k, SSP-k, and RDeepSense-MCk. MCDrop-k
highly underestimates the predictive distribution. SSP-k highly overestimates the predictive distribution. RDeepSense makes
a tradeoff between these two and is the closest curve to the optimal predictive distribution.

4.4.3 GasSen. Next we compare RDeepSense with other baseline algorithms for the GasSen task. Table 5
illustrates the performance of all these algorithms based on Mean Absolute Error (MAE) and Negative Log-
Likelihood (NLL). Except for RDeepSense-MC20, RDeepSense is the best-performing algorithm according to these

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:15

Table 5. Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) for the GasSen task. Except for RDeepSense-MC20,
RDeepSense is the best-performing algorithm for both MAE and NLL.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
MAE 15.25 17.21 16.44 16.34 15.61
NLL 3.77 4.23 4.18 3.88 3.73

SSP-1 SSP-3 SSP-5 SSP-10 GP
MAE 24.40 22.53 20.75 20.68 35.74
NLL 4.76 4.34 3.92 3.81 7.76

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
MAE 21.23 20.45 19.79 19.79
NLL 2201.95 463.94 170.45 170.45

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
MCDrop−1
MCDrop−3
MCDrop−5
MCDrop−10
GP
RDeepSense

(a) The calibration curves of RDeepSense, GP, and
MCDrop-k.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
SSP−1
SSP−3
SSP−5
SSP−10
GP
RDeepSense

(b) The calibration curves of RDeepSense, GP, and
SSP-k.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
GP
RDeepSense

(c) The calibration curves of RDeepSense, GP, and
RDeepSense-MCk.

Fig. 3. The calibration curves of GasSen for RDeepSense, GP, MCDrop-k, SSP-k, and RDeepSense-MCk. MCDrop-k highly
underestimates the predictive distribution. SSP-k highly overestimates the predictive distribution. RDeepSense is the closest
curve to the optimal predictive distribution.

two metrics. Similarly, MCDrop-k shows lowMAE and NLL, while SSP-k shows high MAE and NLL. This is due to
the objective of these two types of algorithms. MCDrop-k minimizes the mean square error, while SSP-k minimizes

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:16 • S. Yao et al.

the negative log-likelihood. Therefore, MCDrop-k focuses more on the mean of predictive distribution, and SSP-k
focuses more on the overall likelihood. RDeepSense combines two objective function. Therefore, RDeepSense is
able to achieve the best performance in both cases. The usage of dropout that prevents feature co-adapting is the
main reason why RDeepSense achieves better NLL compared with SPP-k. The RDeepSense still achieves good
performance compared with its Motel Carlo version. Only RDeepSense-MC20 slightly outperforms RDeepSense
under the NLL measurement, which shows the effectiveness of the approximation used in RDeepSense.
The calibration curves of GasSen task is illustrated in Figure 3. The calibration curves of MCDrop-k highly

underestimates the predictive distribution as shown in Figure 3a, while the calibration curves of SSP-k highly over-
estimates the predictive distribution as shown in Figure 3b. Although there exists a bit deviation for RDeepSense
compared with the optimal calibration curve, RDeepSense greatly reduces the effect of underestimation and over-
estimation, and slightly outperforms the traditional statistical model, GP. Compared with unbiased RDeepSense-
MCk, RDeepSense shows the similar performance. However, RDeepSense saves save a great amount of energy
and time consumption as we will discuss in Section 4.5.
4.4.4 HHAR. Last we compare RDeepSense with the other baseline algorithm for the HHAR task. Table 6

illustrates the performance metrics of all algorithms based on Accuracy (Acc), F1 Score (F1 Score), Negative
Log-Likelihood (NLL), and Mean Entropy of False Predictions (MEFP).

Table 6. Accuracy (Acc), Negative Log-Likelihood (NLL), Mean Entropy of False Predictions (MEFP) for the HHAR task.
RDeepSense is the best-performing algorithm according to all measures.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
Acc 83.98% 80.66% 83.07% 83.08% 83.85%

F1 Score 0.670 0.601 0.638 0.668 0.671
NLL 0.161 0.193 0.188 0.172 0.159
MEFP 1.715 1.604 1.621 1.626 1.628

SSP-1 SSP-3 SSP-5 SSP-10 GP
Acc 77.15% 78.34% 79.30% 80.30% 77.29%

F1 Score 0.650 0.652 0.657 0.661 0.659
NLL 1.138 1.188 1.165 1.214 0.807
MEFP 1.619 1.629 1.672 1.708 1.218

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
Acc 79.53% 79.73% 79.73% 80.51%

F1 Score 0.586 0.589 0.589 0.593
NLL 0.166 0.163 0.162 0.161
MEFP 0.501 0.548 0.574 0.579

Except for RDeepSense-MC20, RDeepSense is the best-performing algorithm according to all measures, which
means RDeepSense can provide both high prediction accuracy as well as high quality of uncertainty estimations.
MCDrop-k algorithms are trained with log-likelihood. Therefore they try to minimize the negative log-likelihood,
but they are over-confident about their prediction even when they make some wrong predictions according to
the MEFP measure. SSP-k algorithms are trained with Brier score. Therefore they fall short to achieve smaller
NLL values. Compared with RDeepSense-MCk algorithms, RDeepSense still provides a good performance in all
measurements. Only RDeepSense-MC20 shows a superior performance on F1 Score and NLL measurements.

4.5 Inference time and energy consumption

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:17

0

50

100

150

200

250

300
In

fe
re

nc
e

Ti
m

e
(m

S)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(a) The inference time of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for BPEst.

0

50

100

150

200

250

300

En
er

gy
 (m

J)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(b) The energy consumption of RDeepSense, RDeepSense-
MCk,MCDrop-k, and SSP-k for BPEst.

Fig. 4. The inference time and energy consumption of RDeepSense, RDeepSense-MCk, MCDrop-k, and SSP-k for BPEst.

0

50

100

150

200

250

In
fe

re
nc

e
Ti

m
e

(m
S)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(a) The inference time of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for NYCommute.

0

50

100

150

200

250

En
er

gy
 (m

J)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(b) The energy consumption of RDeepSense, RDeepSense-
MCk, MCDrop-k, and SSP-k for NYCommute.

Fig. 5. The inference time and energy consumption of RDeepSense, RDeepSense-MCk,MCDrop-k, and SSP-k for NYCommute.

0

50

100

150

200

250

In
fe

re
nc

e
Ti

m
e

(m
S)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(a) The inference time of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for GasSen.

0

50

100

150

200

250

En
er

gy
 (m

J)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(b) The energy consumption of RDeepSense, RDeepSense-
MCk, MCDrop-k, and SSP-k for GasSen.

Fig. 6. The inference time and energy consumption of RDeepSense, RDeepSense-MCk, MCDrop-k, and SSP-k for GasSen.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:18 • S. Yao et al.

0

100

200

300

400

500

600
In

fe
re

nc
e

Ti
m

e
(m

S)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(a) The inference time of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for HHAR.

0

100

200

300

400

500

En
er

gy
 (m

J)

RDeepSense
RDeepSense−MC3
RDeepSense−MC5
RDeepSense−MC10
RDeepSense−MC20
MCDrop−3
MCDrop−5
MCDrop−10
MCDrop−20
SSP−1
SSP−3
SSP−5
SSP−10

(b) The energy consumption of RDeepSense, RDeepSense-
MCk, MCDrop-k, and SSP-k for HHAR.

Fig. 7. The inference time and energy consumption of RDeepSense, RDeepSense-MCk, MCDrop-k, and SSP-k for HHAR.

We compared the resource consumption of each algorithm including inference time and energy consumption of
one-data-sample execution, which are two key issues for mobile and ubiquitous computing. All the experiments
are conducted on Intel Edison with only CPU as the computing unit. No further optimization is made on
any algorithms. The inference time and energy consumption of GP are not included. This is because the time
complexity of GP isO (N 3), where N is the size of training dataset, which is infeasible for embedded devices such
as Intel Edison. The results of four tasks, i.e., BPEst, NYCommute, GasSen, and HHAR, are illustrated in Figures 4,
5, 6, and 7 respectively.
We can clearly see that RDeepSense greatly reduces the inference time and energy consumption compared

with the other deep learning uncertainty estimation algorithms. Compared with MCDrop algorithm, RDeepSense
is trained according to the proper scoring rule, which can directly output the predictive distribution instead of
using sampling methods. Compared with SSP algorithm, RDeepSense uses dropout regularization as an implicit
ensemble method, which avoids running multiple deep learning models during model inference on embedded
devices. Compared with RDeepSense-MC, RDeepSense use the approximation (11) to replace the computationally
intensive Motel Carlo method (10) during the inference.
We further analyze the relationship between energy consumption and the quality of uncertainty estimation

for each algorithms. For regression problems, we use the area between the calibration curve of an algorithm
and the optimal calibration curve, called deviation area, as the quality measurement of uncertainty. The smaller
deviation area is, the better quality of uncertainty the algorithm estimates. When the calibration curve of an
algorithm is optimal, the deviation area is 0. For classification problems, we use the negative mean entropy of
false predictions as the quality measurement of uncertainty. Smaller negative mean entropy of false predictions
means is that the algorithm is more uncertain about their false predictions. The result is shown in Figure 8.

The point or line stay in the bottom-left corner of the graph represents a better tradeoff between energy and
uncertainty quality, i.e., using less energy to obtain better uncertainty estimations. Therefore, RDeepSense is the
best-performing algorithm that uses the least amount of energy to obtain the best uncertainty estimation quality.
RDeepSense-MC can achieve similar uncertainty estimation quality as RDeepSense, however it requires much
more energy consumption. The results show that RDeepSense is an effective and efficient uncertainty estimation
algorithm (11) compared with its Monte Carlo version (10). Other two baseline algorithms, MCDrop and SSP,
usually suffer a large deviation area or become over-confidence about their false predictions while using more
energy for computation. Figure 8 shows that RDeepSense is the most suitable algorithm for generate predictive
uncertainty estimations for mobile and ubiquitous computing application on embedded devices.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:19

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

En
er

gy
 (m

J)

Deviation Area

RDeepSense
MCDrop
SSP
RDeepSense−MC

(a) The relationship between deviation area and
energy consumption for BPEst.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

En
er

gy
 (m

J)

Deviation Area

RDeepSense
MCDrop
SSP
RDeepSense−MC

(b) The relationship between deviation area and
energy consumption for NYCommute.

0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

250

En
er

gy
 (m

J)

Deviation Area

RDeepSense
MCDrop
SSP
RDeepSense−MC

(c) The relationship between deviation area and
energy consumption for GasSen.

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4
0

100

200

300

400

500

En
er

gy
 (m

J)

Negative Mean Entropy of False Predictions

RDeepSense
MCDrop
SSP
RDeepSense−MC

(d) The relationship between negative mean en-
tropy of false predictions and energy consumption
for HHAR.

Fig. 8. The relationship between deviation area/negative mean entropy of false predictions and energy consumption of all
algorithms. RDeepSense (in the bottom-left corner) is the best-performing algorithm that uses the least energy to achieve
the best uncertainty estimation quality

4.6 Effect of hyper-parameter α on model performance
The hyper-parameter α controls the tradeoff between optimization of mean and variance within the training
objective function (6) that can help to obtain a well-calibrated uncertainty estimation. In this subsection, we
evaluate the functionality of α and also shed light on the way of tuning α .
For each task, we train RDeepSense with α = [0, 0.2, 0.4, 0.6, 0.8, 0.9]. When α = 0.0, RDeepSense is trained

by minimizing the negative log-likelihood. When we increase the value of α , RDeepSense focuses more on the
mean value estimation instead of the negative log-likelihood. In order to show the effect of the choice of α on the
quality of predictive uncertainty estimation, we show the negative log-likelihood and devision area (the area
between the calibration curve of an algorithm and the optimal calibration curve) for regression tasks and show
the negative log-likelihood and Negative Mean Entropy (NME) of false predictions for the classification task in
Figure 9.

A good uncertainty estimation should faithfully reflect the probability that prediction will happen. Therefore,
RDeepSense targets on a well-calibrated uncertainty estimation, such as the prediction with low devision
area, in stead of the prediction with low negative log-likelihood. From Figure 9a, 9b, and 9c, we can see that
hyper-parameter α controls the tradeoff between optimization mean and variance within the training objective

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:20 • S. Yao et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3

3.5

4

4.5

5

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

D
ev

ia
tio

n
A

re
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
14.5

15

15.5

M
ea

n
A

bs
ou

lte
 E

rr
or

α

(a) Negative Log-Likelihood, Mean Absolute Error, and
Deviation Area with different selections of α for BPEst.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

N
e
g

a
ti

v
e
 L

o
g

−
L

ik
e
li

h
o

o
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

D
e
v

ia
ti

o
n

 A
r
e
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5.2

5.4

5.6

5.8

6

M
e
a

n
 A

b
so

u
lt

e
 E

r
r
o

r

α

(b) Negative Log-Likelihood, Mean Absolute Error, and
Deviation Area with different selections of α for NY-
Commute.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3

3.5

4

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

D
ev

ia
tio

n
A

re
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
15

15.5

16

M
ea

n
A

bs
ou

lte
 E

rr
or

α

(c) Negative Log-Likelihood, Mean Absolute Error, and
Deviation Area with different selections of α for GasSen.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

N
M

E
of

 F
al

se
 P

re
di

ct
io

ns

α

(d) Negative Log-Likelihood and Negative Mean Entropy
(NME) of false predictions with different selections of α
for HHAR.

Fig. 9. Negative Log-Likelihood, Mean Absolute Error, and Deviation Area/Negative Mean Entropy (NME) of false predictions
with different selections of α for four tasks.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:21

function (6). Smaller α tends to reduce negative log-likelihood by increasing the predictive variance, which tends
to result the overestimation of predictive uncertainties. Larger α tends to reduce negative log-likelihood by
predicting a better mean value, which tends to result the underestimation of predictive uncertainties. When
tuning the hyper-parameter α , we can easily found a point that achieve the smallest devision area by grid
searching α from 0 to 1. At the same time, it is not surprising that increasing α can slightly increase the negative
log-likelihood, since α = 0 represents regarding negative log-likelihood as the objective function. In addition,
Figure 9d shows that increasing α can consistently increase the negative mean entropy of false predictions.

5 DISCUSSION
This paper focuses on empowering neural networks to generate high-quality predictive uncertainty estimations
in a theoretically-grounded and energy-efficient manner for mobile and ubiquitous computing tasks. Currently,
RDeepSense can only support fully-connected neural networks. It is possible to extend the two-step solution
introduced in Section 3 to convolutional and recurrent neural networks by replacing the original dropout
operation with convolutional dropout [16] and recurrent dropout [18]. These two dropout operations can convert
convolutional neural networks and recurrent neural networks into Bayesian neural networks [16, 18], but
additional efforts are needed to 1) theoretically prove that the extended two-step solution can equate an arbitrary
neural network with a statistical model, and 2) empirically show that the extended two-step solution can provide
high-quality uncertainty estimations on the real datasets.
Another interesting extension could be empowering existing neural networks within mobile and ubiquitous

computing applications to generate predictive uncertainty estimations without additional training. A lot of neural
networks have already been trained with dropout operations. As shown by Gal et al. [17], although these models
tend to underestimate the true uncertainties, they can provide uncertainty estimations during model inference.
This can be a good solution for mobile and ubiquitous computing applications that want to obtain an indictor of
predictive uncertainty instead of a high-quality predictive uncertainty estimation without retraining their neural
networks. However, additional efforts are needed to bypass the Monte Carlo sampling method and provide an
energy-efficient method for generating uncertainty estimations on embedded devices.
In addition, for classification problems, although traditional neural networks can also output predictive

distribution on each class, which contains predictive uncertainties, RDeepSense provides a high-quality predictive
distribution on each class and has been proved to be equivalent to a statistical model.

6 CONCLUSION
We introduced RDeepSense, a simple yet effective solution that empowers fully-connected neural networks
to generate well-calibrated predictive uncertainty estimations during model inference. RDeepSense is a com-
putationally efficient algorithm that can provide predictive uncertainty estimations in mobile and ubiquitous
computing applications with almost no additional overhead. Theoretical analysis also shows the equivalence
between RDeepSense and a statistical model. We evaluated RDeepSense on four mobile and ubiquitous computing
tasks, where RDeepSense outperformed the state-of-the-art baselines by significant margins on the quality of
uncertainty estimations while still consuming the least amount of energy on embedded devices. In summary,
RDeepSense is a simple, effective, and efficient solution for mobile and ubiquitous applications to build reliable
neural networks with uncertainty estimations.

ACKNOWLEDGMENTS
Research reported in this paper was sponsored in part by the U.S. Army Research Laboratory andwas accomplished
under Cooperative Agreements W911NF-17-2-0196 and W911NF-09-2-0053, DARPA contract W911NF-17-C-0099,
and NSF grants CNS 13-29886 and CNS 16-18627. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied,

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:22 • S. Yao et al.

of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation here on.

A THEORETICAL ANALYSIS: THE EQUIVALENCE BETWEEN RDEEPSENSE AND STATISTICAL
MODELS

A.1 Dropout with mean square error
Assume that we have N pairs of training data, which can be formed into the input matrix X ∈ RN×d (0) and the
corresponding output matrix Y ∈ RN×d

(L) . For the regression problem, we place a joint Gaussian distribution
over all function values

p (F|X) ∼ N (0,K (X,X)),

p (Y|F) ∼ N (F ,τ−1I).
(12)

where τ is the precision hyper-parameter and K (·, ·) is the covariance function, encoding the prior function
distribution of the Gaussian process. With a dataset of N samples, K (·, ·) is a N × N matrix.
To formulate a fully-connected neural network as a Gaussian process, for a single fully-connected layer in a

Bayesian neural network, we can define the covariance function as

K (x, x′) =
∫

p (W(l)) f (l) (xW(l) + b(l)) f (l) (x′W(l) + b(l))dW(l), (13)

where p (W(l)) = N (0, l−2I) and f (l) (·) is the nonlinear activation function. For an L-layer fully-connected neural
network, we can feed the output of one Gaussian process to the covariance of the next as a deep Gaussian process
model [12]. Then our final target, predictive distribution estimation, can be formulated as

p (y|x,X,Y) =
∫

p (y|x,W)p (W|X,Y)dW, (14)

where p (y|x,W) is the whole Bayesian neural network with random variablesW = {p (W(l))}.
However, calculating the predictive distribution estimation p (y|x,X,Y) requires the posterior distribution

p (W|X,Y), and calculating the posterior distribution p (W|X,Y) further requires calculating the inverse of an
N ×N matrix, which is infeasible for a large-scale dataset used by a deep neural network. Therefore, a variational
distribution q(W) =

∏L
l=1 p (W̃

(l)) is proposed to approximate the true posterior distribution, where W̃(l) is the
random variable used in dropout operations introduced in (2).

Then we minimize the KL divergence between the approximated posterior q(W) and the posterior of the deep
Gaussian process over the variational parameters {W̃(l) }. The minimization objective is the negative log evidence
lower bound derived from the likelihood,

Lдp = −

∫
q(W) logp (Y|X,W)dW + KL(q(W) | |p (W)). (15)

We can use Monte Carlo sampling to approximate the first integral in (15), and (15) can be reduced to

Lдp =

N∑
n=1

(yn − ŷn)2 +
pil

2

2τN

L∑
l=1
∥W(l) ∥22 , (16)

where pi is the dropout probability in (2), τ is the hyperparameter in (12), and l is the length-scale used to define
the prior distribution p (W(l)).

If we compare (16) with the first equations in (4) and (5), we can find that optimizing a variational approximation
of deep Gaussian process is equivalent to optimizing an dropout neural network based on mean square error as
the loss function.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:23

A.2 Dropout with negative log-likelihood
Wehave already shown that the equivalence between dropout training and deep Gaussian process with variational
approximation. In order to further formulate a fully-connected neural network with log-likelihood as a statistical
model, we adds an additional generative step to deep Gaussian process that converts (12) into a new statistical
model,

p (F|X) ∼ N (0,K (X,X)),

p (Z|F) ∼ N (F ,τ−1I),
p (Y|Z) ∼ д(Y;Z),

(17)

where д(Y;Z) is a distribution that converts latent Gaussian process into predictive distribution that conforms
the proper scoring rule, i.e., log-likelihood.
For regression problems, p (Y|Z) is the Gaussian distribution,

Z = [Zµ ,Zσ 2],
p (Y|Z) ∼ N (Zµ ,Zσ 2).

(18)

For classification problems, p (Y|Z) is the composition of categorical distribution with softmax function

p (Ynk |Zn ·) ∼
exp(Znk)∑
k ′ exp(Znk ′)

. (19)

Therefore, the final predictive distribution estimation is changed from (14) into

p (y|x,X,Y) =
∫

p (y|z)
(∫

p (z|x,W)p (W|X,Y)dW
)
dz. (20)

In order to calculate the predictive probability (20), we still have to propose the same variational distribution
q(W) =

∏L
l=1 p (W̃

(l)) to approximate the posterior distribution p (W|X,Y), where W̃(l) is the random variable
used in dropout operations introduced in (2).
Then, in order to optimize over the variational distribution, the log evidence lower bound for the likelihood

can be derived from the likelihood function,
logp (Y|X)

= log
∫

p (Y|Z)p (Z|X,W)p (W)dWdZ

= log
∫

q(W)p (Y|Z)p (Z|X,W)
p (W)

q(W)
dWdZ

≥

∫
q(W)p (Z|X,W) log *

,
p (Y|Z)

p (W)

q(W)
+
-
dWdZ

=

∫
q(W)p (Z|X,W) logp (Y|Z)dWdZ − KL

(
q(W) | |p (W)

)
.

(21)

Therefore we minimize the negative log evidence lower bound derived in (21) to optimize the variational
parameters {W̃(l) },

Llдp = −

N∑
n=1

∫
p (zn |xn ,W) · logp (yn |zn)dWdZ + KL

(
q(W) | |p (W)

)
. (22)

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:24 • S. Yao et al.

The first integral in (22) can be approximated with Monte Carlo integration and the second term can be
approximated according to MCDrop [17],

Llдpmc = −

N∑
n=1

logp
(
yn |ẑn (xn ,Ŵ)

)
+

pil
2

2τN

L∑
l=1
∥W(l) ∥22 . (23)

Then it is trivial to verify that (23) is equivalent to the second equation in (4) and (5) for regression and
classification problems respectively by substituting p (yn |ẑn (xn ,Ŵ)) with (18) or (19).

Now, we have shown that training a fully-connected neural network with dropout and negative log-likelihood
loss function is equivalent to a Gaussian or categorical distribution based on the latent deep Gaussian process.

REFERENCES
[1] Intel edison compute module. http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf.
[2] P. Baldi and P. J. Sadowski. Understanding dropout. In Advances in Neural Information Processing Systems, pages 2814–2822, 2013.
[3] J. S. Bauer, S. Consolvo, B. Greenstein, J. Schooler, E. Wu, N. F. Watson, and J. Kientz. Shuteye: encouraging awareness of healthy sleep

recommendations with a mobile, peripheral display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 1401–1410. ACM, 2012.

[4] P. Baumann, M. Langheinrich, A. Dey, and S. Santini. Quantifying the uncertainty of next-place predictions. In Proceedings of the
8th EAI International Conference on Mobile Computing, Applications and Services, pages 74–85. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2016.

[5] F. R. Bentley, Y.-Y. Chen, and C. Holz. Reducing the stress of coordination: sharing travel time information between contacts on mobile
phones. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 967–970. ACM, 2015.

[6] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians. Journal of the American Statistical
Association, (just-accepted), 2017.

[7] N. Boukhelifa, M.-E. Perrin, S. Huron, and J. Eagan. How data workers cope with uncertainty: A task characterisation study. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 3645–3656. ACM, 2017.

[8] K.-Y. Chen, D. Ashbrook, M. Goel, S.-H. Lee, and S. Patel. Airlink: sharing files between multiple devices using in-air gestures. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 565–569. ACM, 2014.

[9] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L. LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, et al. The
mobile sensing platform: An embedded activity recognition system. IEEE Pervasive Computing, 7(2), 2008.

[10] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman. Indoor location sensing using geo-magnetism. In Proceedings
of the 9th international conference on Mobile systems, applications, and services, pages 141–154. ACM, 2011.

[11] M. Clyde and E. I. George. Model uncertainty. Statistical science, pages 81–94, 2004.
[12] A. Damianou and N. Lawrence. Deep gaussian processes. In Artificial Intelligence and Statistics, pages 207–215, 2013.
[13] V. B. E. T. G. A. H. C. Daniel Castro, Steven Hickson and I. Essa. Predicting daily activities from egocentric images using deep learning.

ISWC, 2015.
[14] M. Faurholt-Jepsen, M. Vinberg, M. Frost, S. Debel, E. Margrethe Christensen, J. E. Bardram, and L. V. Kessing. Behavioral activities

collected through smartphones and the association with illness activity in bipolar disorder. International journal of methods in psychiatric
research, 25(4):309–323, 2016.

[15] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco. Reservoir computing compensates slow response of chemosensor arrays exposed to fast
varying gas concentrations in continuous monitoring. Sensors and Actuators B: Chemical, 215:618–629, 2015.

[16] Y. Gal and Z. Ghahramani. Bayesian convolutional neural networks with bernoulli approximate variational inference. arXiv preprint
arXiv:1506.02158, 2015.

[17] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016.
[18] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. In Advances in Neural

Information Processing Systems, pages 1019–1027, 2016.
[19] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–459, 2015.
[20] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association,

102(477):359–378, 2007.
[21] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley.

Physiobank, physiotoolkit, and physionet. Circulation, 101(23):e215–e220, 2000.
[22] D. Gordon, J. Czerny, T. Miyaki, and M. Beigl. Energy-efficient activity recognition using prediction. InWearable Computers (ISWC),

2012 16th International Symposium on, pages 29–36. IEEE, 2012.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

http://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf

RDeepSense: Reliable Deep Mobile Computing Models with Uncertainty Estimations • 173:25

[23] E. Griffiths, T. S. Saponas, and A. Brush. Health chair: implicitly sensing heart and respiratory rate. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, pages 661–671. ACM, 2014.

[24] T. Grosse-Puppendahl, X. Dellangnol, C. Hatzfeld, B. Fu, M. Kupnik, A. Kuijper, M. R. Hastall, J. Scott, and M. Gruteser. Platypus:
Indoor localization and identification through sensing of electric potential changes in human bodies. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services, pages 17–30. ACM, 2016.

[25] Y. Guan and T. Ploetz. Ensembles of deep lstm learners for activity recognition using wearables. arXiv preprint arXiv:1703.09370, 2017.
[26] Y. Jiang, X. Pan, K. Li, Q. Lv, R. P. Dick, M. Hannigan, and L. Shang. Ariel: Automatic wi-fi based room fingerprinting for indoor

localization. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 441–450. ACM, 2012.
[27] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany. Cuff-less high-accuracy calibration-free blood pressure estimation using

pulse transit time. In Circuits and Systems (ISCAS), 2015 IEEE International Symposium on, pages 1006–1009. IEEE, 2015.
[28] S. Kaiser, A. Parks, P. Leopard, C. Albright, J. Carlson, M. Goel, D. Nassehi, and E. C. Larson. Design and learnability of vortex whistles

for managing chronic lung function via smartphones. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 569–580. ACM, 2016.

[29] M. Kay, T. Kola, J. R. Hullman, and S. A. Munson. When (ish) is my bus?: User-centered visualizations of uncertainty in everyday, mobile
predictive systems. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 5092–5103. ACM, 2016.

[30] M. Kay, S. N. Patel, and J. A. Kientz. How good is 85%?: A survey tool to connect classifier evaluation to acceptability of accuracy. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 347–356. ACM, 2015.

[31] C. Koehler, N. Banovic, I. Oakley, J. Mankoff, and A. K. Dey. Indoor-alps: an adaptive indoor location prediction system. In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 171–181. ACM, 2014.

[32] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[33] M. Krzywinski and N. Altman. Points of significance: importance of being uncertain. Nature methods, 10(9):809, 2013.
[34] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. arXiv

preprint arXiv:1612.01474, 2016.
[35] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep

learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 283–294. ACM,
2015.

[36] B. Y. Lim and A. K. Dey. Investigating intelligibility for uncertain context-aware applications. In Proceedings of the 13th international
conference on Ubiquitous computing, pages 415–424. ACM, 2011.

[37] Z. C. Lipton. The mythos of model interpretability. arXiv preprint arXiv:1606.03490, 2016.
[38] A. Mannini, S. S. Intille, M. Rosenberger, A. M. Sabatini, and W. Haskell. Activity recognition using a single accelerometer placed at the

wrist or ankle. Medicine and science in sports and exercise, 45(11):2193, 2013.
[39] P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu. Leveraging directional antenna capabilities for fine-grained gesture recognition. In

Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 541–551. ACM, 2014.
[40] T. Park, J. Lee, I. Hwang, C. Yoo, L. Nachman, and J. Song. E-gesture: a collaborative architecture for energy-efficient gesture recognition

with hand-worn sensor and mobile devices. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, pages
260–273. ACM, 2011.

[41] G. Pirkl and P. Lukowicz. Robust, low cost indoor positioning using magnetic resonant coupling. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, pages 431–440. ACM, 2012.

[42] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th annual
international conference on Mobile computing & networking, pages 27–38. ACM, 2013.

[43] J. Quinonero-Candela, C. E. Rasmussen, F. Sinz, O. Bousquet, and B. Schölkopf. Evaluating predictive uncertainty challenge. In Machine
Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, pages 1–27.
Springer, 2006.

[44] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina, and F. Kawsar. Towards multimodal deep learning for activity recognition
on mobile devices. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pages
185–188. ACM, 2016.

[45] C. E. Rasmussen. Gaussian processes for machine learning. 2006.
[46] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.
[47] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen. Smart devices are different:

Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, pages 127–140. ACM, 2015.

[48] T. Toscos, K. Connelly, and Y. Rogers. Best intentions: health monitoring technology and children. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, pages 1431–1440. ACM, 2012.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

173:26 • S. Yao et al.

[49] E. J. Wang, W. Li, D. Hawkins, T. Gernsheimer, C. Norby-Slycord, and S. N. Patel. Hemaapp: noninvasive blood screening of hemoglobin
using smartphone cameras. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages
593–604. ACM, 2016.

[50] H. Wang, Y.-H. Kuo, D. Kifer, and Z. Li. A simple baseline for travel time estimation using large-scale trip data. In Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, page 61. ACM, 2016.

[51] J. Weppner, B. Bischke, and P. Lukowicz. Monitoring crowd condition in public spaces by tracking mobile consumer devices with
wifi interface. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pages
1363–1371. ACM, 2016.

[52] L. Yao, F. Nie, Q. Z. Sheng, T. Gu, X. Li, and S. Wang. Learning from less for better: semi-supervised activity recognition via shared
structure discovery. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 13–24.
ACM, 2016.

[53] S. Yao, M. T. Amin, L. Su, S. Hu, S. Li, S. Wang, Y. Zhao, T. Abdelzaher, L. Kaplan, C. Aggarwal, et al. Recursive ground truth estimator
for social data streams. In Information Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Conference on, pages 1–12.
IEEE, 2016.

[54] S. Yao, S. Hu, S. Li, Y. Zhao, L. Su, L. Kaplan, A. Yener, and T. Abdelzaher. On source dependency models for reliable social sensing:
Algorithms and fundamental error bounds. In Distributed Computing Systems (ICDCS), 2016 IEEE 36th International Conference on, pages
467–476. IEEE, 2016.

[55] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. Deepsense: a unified deep learning framework for time-series mobile sensing data
processing. In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering
Committee, 2017.

[56] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher. Deepiot: Compressing deep neural network structures for sensing systems with a
compressor-critic framework. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. ACM, 2017.

[57] H.-S. Yeo, J. Lee, A. Bianchi, and A. Quigley. Watchmi: pressure touch, twist and pan gesture input on unmodified smartwatches. In
Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, pages 394–399. ACM,
2016.

[58] C. Zhang, L. Liu, D. Lei, Q. Yuan, H. Zhuang, T. Hanratty, and J. Han. Triovecevent: Embedding-based online local event detection in
geo-tagged tweet streams. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 595–604. ACM, 2017.

[59] C. Zhang, K. Zhang, Q. Yuan, H. Peng, Y. Zheng, T. Hanratty, S. Wang, and J. Han. Regions, periods, activities: Uncovering urban
dynamics via cross-modal representation learning. In Proceedings of the 26th International Conference on World Wide Web, pages 361–370.
International World Wide Web Conferences Steering Committee, 2017.

[60] Y. Zhang, M. K. Chong, J. Müller, A. Bulling, and H. Gellersen. Eye tracking for public displays in the wild. Personal and Ubiquitous
Computing, 19(5-6):967–981, 2015.

[61] Y. Zhao, S. Li, S. Hu, L. Su, S. Yao, H. Shao, H. Wang, and T. Abdelzaher. Greendrive: A smartphone-based intelligent speed adaptation
system with real-time traffic signal prediction. In Proceedings of the 8th International Conference on Cyber-Physical Systems, pages
229–238. ACM, 2017.

[62] Y. Zhao, S. Yao, S. Li, S. Hu, H. Shao, and T. F. Abdelzaher. Vibebin: A vibration-based waste bin level detection system. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):122, 2017.

[63] Y. Zhao, Y. Zhang, T. Yu, T. Liu, X. Wang, X. Tian, and X. Liu. Citydrive: A map-generating and speed-optimizing driving system. In
INFOCOM, 2014 Proceedings IEEE, pages 1986–1994. IEEE, 2014.

Received May 2017; revised August 2017; accepted October 2017

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 173. Publication date:
December 2017.

	Abstract
	1 Introduction
	2 Related work
	3 RDeepSense Framework
	3.1 RDeepSense components
	3.2 Theoretical analysis: the equivalence between RDeepSense and statistical models
	3.3 RDeepSense uncertainty estimation

	4 Evaluation
	4.1 Testing hardware
	4.2 Evaluation tasks
	4.3 Baseline algorithms
	4.4 Accuracy of prediction and quality of uncertainty estimations
	4.5 Inference time and energy consumption
	4.6 Effect of hyper-parameter on model performance

	5 Discussion
	6 Conclusion
	Acknowledgments
	A Theoretical analysis: the equivalence between RDeepSense and statistical models
	A.1 Dropout with mean square error
	A.2 Dropout with negative log-likelihood

	References

