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ABSTRACT
Recent advances in deep learning motivate the use of deep neutral
networks in sensing applications, but their excessive resource needs
on constrained embedded devices remain an important impediment.
A recently explored solution space lies in compressing (approximat-
ing or simplifying) deep neural networks in some manner before
use on the device. We propose a new compression solution, called
DeepIoT, that makes two key contributions in that space. First,
unlike current solutions geared for compressing speci�c types of
neural networks, DeepIoT presents a uni�ed approach that com-
presses all commonly used deep learning structures for sensing
applications, including fully-connected, convolutional, and recur-
rent neural networks, as well as their combinations. Second, unlike
solutions that either sparsify weight matrices or assume linear struc-
ture within weight matrices, DeepIoT compresses neural network
structures into smaller dense matrices by �nding the minimum
number of non-redundant hidden elements, such as �lters and di-
mensions required by each layer, while keeping the performance
of sensing applications the same. Importantly, it does so using an
approach that obtains a global view of parameter redundancies,
which is shown to produce superior compression. �e compressed
model generated by DeepIoT can directly use existing deep learn-
ing libraries that run on embedded and mobile systems without
further modi�cations. We conduct experiments with �ve di�erent
sensing-related tasks on Intel Edison devices. DeepIoT outperforms
all compared baseline algorithms with respect to execution time
and energy consumption by a signi�cant margin. It reduces the
size of deep neural networks by 90% to 98.9%. It is thus able to
shorten execution time by 71.4% to 94.5%, and decrease energy
consumption by 72.2% to 95.7%. �ese improvements are achieved
without loss of accuracy. �e results underscore the potential of
DeepIoT for advancing the exploitation of deep neural networks on
resource-constrained embedded devices.
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1 INTRODUCTION
�is paper is motivated by the prospect of enabling a “smarter”

and more user-friendly category of every-day physical objects ca-
pable of performing complex sensing and recognition tasks, such as
those needed for understanding human context and enabling more
natural interactions with users in emerging Internet of �ings (IoT)
applications.

Present-day sensing applications cover a broad range of areas
including human interactions [27, 59], context sensing [6, 34, 39,
46, 54], crowd sensing [55, 58], object detection and tracking [7,
29, 42, 53]. �e recent commercial interest in IoT technologies
promises a proliferation of smart objects in human spaces at a much
broader scale. Such objects will ideally have independent means of
interacting with their surroundings to perform complex detection
and recognition tasks, such as recognizing users, interpre�ing voice
commands, and understanding human context. �e paper explores
the feasibility of implementing such functions using deep neural
networks on computationally-constrained devices, such as Intel’s
suggested IoT platform: the Edison board1.

�e use of deep neural networks in sensing applications has re-
cently gained popularity. Speci�c neural network models have been
designed to fuse multiple sensory modalities and extract temporal
relationships for sensing applications. �ese models have shown
signi�cant improvements on audio sensing [31], tracking and local-
ization [8, 38, 52, 56], human activity recognition [37, 56], and user
identi�cation [31, 56].

1h�ps://so�ware.intel.com/en-us/iot/hardware/edison
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Training the neural network can occur on a computationally
capable node and, as such, is not of concern in this paper. �e key
impediment to deploying deep-learning-based sensing applications
lies in the high memory consumption, execution time, and energy
demand associated with storing and using the trained network on
the target device. �is leads to increased interest in compressing
neural networks to enable exploitation of deep learning on low-end
embedded devices.

We propose DeepIoT that compresses commonly used deep neu-
ral network structures for sensing applications through deciding
the minimum number of elements in each layer. Previous illumi-
nating studies on neural network compression sparsify large dense
parameter matrices into large sparse matrices [4, 22, 24]. In contrast,
DeepIoT minimizes the number of elements in each layer, which
results in converting parameters into a set of small dense matrices.
A small dense matrix does not require additional storage for element
indices and is e�ciently optimized for processing [19]. DeepIoT
greatly reduces the e�ort of designing e�cient neural structures for
sensing applications by deciding the number of elements in each
layer in a manner informed by the topology of the neural network.

DeepIoT borrows the idea of dropping hidden elements
from a widely-used deep learning regularization method called
dropout [44]. �e dropout operation gives each hidden element
a dropout probability. During the dropout process, hidden ele-
ments can be pruned according to their dropout probabilities. �en
a “thinned” network structure can be generated. However, these
dropout probabilities are usually set to a pre-de�ned value, such
as 0.5. Such pre-de�ned values are not the optimal probabilities,
thereby resulting in a less e�cient exploration of the solution space.
If we can obtain the optimal dropout probability for each hidden
element, it becomes possible for us to generate the optimal slim net-
work structure that preserves the accuracy of sensing applications
while maximally reducing the resource consumption of sensing sys-
tems. An important purpose of DeepIoT is thus to �nd the optimal
dropout probability for each hidden element in the neural network.

Notice that, dropout can be easily applied to all commonly used
neural network structures. In fully-connected neural networks,
neurons are dropped in each layer [44]; in convolutional neural
networks, �lters are dropped in each layer [14]; and in recurrent
neural networks, dimensions are reduced in each layer [15]. �is
means that DeepIoT can be applied to all commonly-used neural
network structures and their combinations.

To obtain the optimal dropout probabilities for the neural net-
work, DeepIoT exploits the network parameters themselves. From
the perspective of model compression, a hidden element that is
connected to redundant model parameters should have a higher
probability to be dropped. A contribution of DeepIoT lies in ex-
ploiting a novel compressor neural network to solve this problem.
It takes model parameters of each layer as input, learns parameter
redundancies, and generates the dropout probabilities accordingly.
Since there are interconnections of parameters among di�erent
layers, we design the compressor neural network to be a recurrent
neural network that can globally share the redundancy information
and generate dropout probabilities layer by layer.

�e compressor neural network is optimized jointly with the orig-
inal neural network to be compressed through a compressor-critic
framework that tries to minimize the loss function of the original

sensing applicaiton. �e compressor-critic framework emulates the
idea of the well-known actor-critic algorithm from reinforcement
learning [28], optimizing two networks in an iterative manner.

We evaluate the DeepIoT framework on the Intel Edison comput-
ing platform [1], which Intel markets as an enabler platform for the
computing elements of embedded “things” in IoT systems. We con-
duct two sets of experiments. �e �rst set consists of three tasks that
enable embedded systems to interact with humans with basic modal-
ities, including handwri�en text, vision, and speech, demonstrating
superior accuracy of our produced neural networks, compared to
others of similar size. �e second set provides two examples of
applying compressed neural networks to solving human-centric
context sensing tasks; namely, human activity recognition and user
identi�cation, in a resource-constrained scenario.

We compare DeepIoT with other state-of-the-art magnitude-
based [22] and sparse-coding-based [4] neural network compression
methods. �e resource consumption of resulting models on the Intel
Edison module and the �nal performance of sensing applications are
estimated for all compressed models. In all experiments, DeepIoT
is shown to outperform the other algorithms by a large margin in
terms of compression ratio, memory consumption, execution time,
and energy consumption. In these experiments, when compared
with the non-compressed neural networks, DeepIoT is able to re-
duce the model size by 90% to 98.9%, shorten the running time by
71.4% to 94.5%, and decrease the energy consumption by 72.2% to
95.7%. When compared with the state-out-the-art baseline algo-
rithm, DeepIoT is able to reduce the model size by 11.6% to 83.2%,
shorten the running time by 60.9% to 87.9%, and decrease the energy
consumption by 64.1% to 88.7%. Importantly, these improvements
are achieved without loss of accuracy. Experiments demonstrate
the promise of DeepIoT in enabling resource-constrained embedded
devices to bene�t from advances in deep learning.

�e rest of this paper is organized as follows. Section 2 introduces
related work on optimizating sensing applications for resource-
constrained devices. We describe the technical details of DeepIoT
in Section 3. We describe system implementation in Section 4. �e
evaluation is presented in Section 5. Finally, we discuss the results
in Section 6 and conclude in Section 7.

2 RELATEDWORK
A key direction in embedded sensing literaure is to enable run-

ning progressively more interesting applications under the more
pronounced resource constraints of embedded and mobile devices.
Brouwers et al. reduced the energy consumption of Wi-Fi based
localization with an incremental scanning strategy [5]. Hester et al.
proposed an ultra-low-power hardware architecture and a compan-
ion so�ware framework for energy-e�cient sensing system [25].
Ferrari et al. and Schuss et al. focused on low-power wireless
communication protocols [13, 41]. Wang et al. enabled energy e�-
cient reliable broadcast by considering poorly correlated links [49].
Saifullah et al. designed a scalable and energy-e�cient wireless
sensor network (WSN) over white spaces [40]. Alsheikh et al. dis-
cussed about data compression in WSN with machine learning
techniques [3].

Recent studies focused on compressing deep neural networks for
embedded and mobile devices. Han et al. proposed a magnitude-
based compression method with �ne-tuning, which illustrated
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Figure 1: Overall DeepIoT system framework. Orange boxes
represent dropout operations. Green boxes represent param-
eters of the original neural network.
promising compression results [24]. �is method removes weight
connections with low magnitude iteratively; however, it requires
additional implementation of sparse matrix with more resource con-
sumption. In addition, the aggressive pruning method increases the
potential risk of irretrievable network damage. Guo et al. proposed
a compression algorithm with connection splicing, which provided
the chance of rehabilitation with a certain threshold [22]. How-
ever, the algorithm still focuses on weight level instead of structure
level. Other than the magnitude-based method, another series of
works focused on the factorization-based method that reduced the
neural network complexity by exploiting low-rank structures in
parameters. Denton et al. exploited various matrix factorization
methods with �ne-tunning to approximate the convolutional oper-
ations in order to reduce the neural network execution time [12].
Lane et al. applied sparse coding based and matrix factorization
based method to reduce complexity of fully-connected layer and
convolutional layer respectively [4]. However, factorization-based
methods usually obtain lower compression ratio compared with
magnitude-based methods, and the low-rank assumption may hurt
the �nal network performance. Wang et al. applied the informa-
tion of frequency domain for model compression [51]. However,
additional implementation is required to speed-up the frequency-
domain representations, and the method is not suitable for modern
CNNs with small convolution �lter sizes. Hinton et al. proposed a
teacher-student framework that distilled the knowledge in an en-
semble of models into a single model [26]. However, the framework
focused more on compressing model ensemble into a single model
instead of structure compression.

Our paper is partly inspired by deep reinforcement learning.
With the aid of deep neural networks, reinforcement leaning has
achieved great success on Atari games [33], Go chess [43], and
multichannel access [50].

To the best of our knowledge, DeepIoT is the �rst framework for
neural network structure compressing based on dropout operations
and reducing parameter redundancies, where dropout operations
provide DeepIoT the chance of rehabilitation with a certain probabil-
ity. DeepIoT generates a more concise network structure for trans-
planting large-scale neural networks onto resource-constrained
embedded devices.

3 SYSTEM FRAMEWORK
We introduce DeepIoT, a neural network structure compression

framework for sensing applications. Without loss of generality,

before introducing the technical details, we �rst use an example of
compressing a 3-layer fully-connected neural network structure to
illustrate the overall pipeline of DeepIoT. �e detailed illustration is
shown in Figure 1. �e basic steps of compressing neural network
structures for sensing applications with DeepIoT can be summarized
as follows.
(1) Insert operations that randomly zeroing out hidden elements

with probabilities p(l ) called dropout (red boxes in Figure 1)
into internal layers of the original neural network. �e internal
layers exclude input layers and output layers that have the �xed
dimension for a sensing application. �is step will be detailed
in Section 3.1.

(2) Construct the compressor neural network. It takes the weight
matrices W(l ) (green boxes in Figure 1) from the layers to be
compressed in the original neural network as inputs, learns and
shares the parameter redundancies among di�erent layers, and
generates optimal dropout probabilities p(l ) , which is then fed
back to the dropout operations in the original neural network.
�is step will be detailed in Section 3.2.

(3) Iteratively optimize the compressor neural network and the
original neural network with the compressor-critic framework.
�e compressor neural network is optimized to produce be�er
dropout probabilities that can generate a more e�cient network
structure for the original neural network. �e original neural
network is optimized to achieve a be�er performance with the
more e�cient structure for a sensing application. �is step will
be detailed in Section 3.3.

For the rest of this paper, all vectors are denoted by bold lower-
case le�ers (e.g., x and y), and matrices and tensors are represented
by bold upper-case le�ers (e.g., X and Y). For a column vector x, the
jth element is denoted by x[j]. For a tensor X, the t th matrix along
the third axis is denoted by X· ·t , and the other slicing denotations
are de�ned similarly. �e superscript l in x(l ) and X(l ) denote the
vector and tensor for the l th layer of the neural network. We use
calligraphic le�ers to denote sets (e.g., X andY). For any set X, |X|
denotes the cardinality of X.

3.1 Dropout Operations in the Original Neural
Network

Dropout is commonly used as a regularization method that prevents
feature co-adapting and model over��ing. �e term “dropout” refers
to dropping out units (hidden and visible) in a neural network. Since
DeepIoT is a structure compression framework, we focus mainly
on dropping out hidden units. �e de�nitions of hidden units are
distinct in di�erent types of neural networks, and we will describe
them in detail. �e basic idea is that we regard neural networks
with dropout operations as bayesian neural networks with Bernoulli
variational distributions [14, 15, 44].

For the fully-connected neural networks, the fully-connected
operation with dropout can be formulated as

z(l )[j] ∼ Bernoulli(p(l )[j]),

W̃(l ) =W(l )diag
(
z(l )

)
,

Y(l ) = X(l )W̃(l ) + b(l ),

X(l+1) = f
(
Y(l )

)
.

(1)
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Refer to (1). �e notation l = 1, · · · ,L is the layer number in
the fully-connected neural network. For any layer l , the weight
matrix is denoted as W(l ) ∈ Rd

(l−1)×d (l ) ; the bias vector is denoted
as b(l ) ∈ Rd

(l ) ; and the input is denoted as X(l ) ∈ R1×d (l−1) . In
addition, f (·) is a nonlinear activation function.

As shown in (1), each hidden unit is controlled by a Bernoulli
random variable. In the original dropout method, the success prob-
abilities of p(l )[j] can be set to the same constant p for all hidden
units [44], but DeepIoT uses the Bernoulli random variable with
individual success probabilities for di�erent hidden units in order
to compress the neural network structure in a �ner granularity.

For the convolutional neural networks, the basic fully-connected
operation is replaced by the convolution operation [14]. However,
the convolution can be reformulated as a linear operation as shown
in (1). For any layer l , we denote K (l ) =

{
K(l )
k

}
for k = 1, · · · , c (l )

as the set of convolutional neural network (CNN)’s kernels, where
K(l )
k ∈ R

h (l )×w (l )×c (l−1) is the kernel of CNN with height h(l ) , width
w (l ) , and channel c (l−1) . �e input tensor of layer l is denoted as
X̂(l ) ∈ Rĥ

(l−1)×ŵ (l−1)×c (l−1) with height ĥ(l−1) , width ŵ (l−1) , and
channel c (l−1) .

Next, we convert convolving the kernels with the input into per-
forming matrix product. We extract h(l ) ×w (l ) × c (l−1) dimensional
patches from the input X̂(l ) with stride s and vectorize them. Collect
these vectorized n patches to be the rows of our new input repre-
sentation X(l ) ∈ Rn×(h

(l )w (l )c (l−1) ) . �e vectorized kernels form the
columns of the weight matrix W(l ) ∈ R(h

(l )w (l )c (l−1) )×c (l ) .
With this transformation, dropout operations can be applied to

convolutional neural networks according to (1). �e composition of
pooling and activation functions can be regarded as the nonlinear
function f (·) in (1). Instead of dropping out hidden elements in
each layer, we drop out convolutional kernels in each layer. From
the perspective of structure compression, DeepIoT tries to prune
the number of kernels used in the convolutional neural networks.

For the recurrent neural network, we take a multi-layer Long
Short Term Memory network (LSTM) as an example. �e LSTM
operation with dropout can be formulated as

z(l )[j] ∼ Bernoulli(p(l )[j]),

*....
,

i
f
o
g

+////
-

=

*....
,

sigm
sigm
sigm
tanh

+////
-

W(l ) *
,
h(l−1)
t � z(l−1)

h(l )t−1 � z(l )
+
-
,

c(l )t = f � c(l )t−1 + i � g,

h(l )t = o � tanh
(
c(l )t

)
.

(2)

�e notation l = 1, · · · ,L is the layer number and t = 1, · · · ,T
is the step number in the recurrent neural network. Element-wise
multiplication is denoted by �. Operators siдm and tanh denote
sigmoid function and hyperbolic tangent respectively. �e vector
h(l )t ∈ R

n (l ) is the output of step t at layer l . �e vector h(0)t = xt
is the input for the whole neural network at step t . �e matrix
W(l ) ∈ R4n (l )×(n (l−1)+n (l ) ) is the weight matrix at layer l . We let
p(0)[j] = 1, since DeepIoT only drops hidden elements.

As shown in (2), DeepIoT uses the same vector of Bernoulli ran-
dom variables z(l ) to control the dropping operations among di�er-
ent time steps in each layer, while individual Bernoulli random vari-
ables are used for di�erent steps in the original LSTM dropout [57].
From the perspective of structure compression, DeepIoT tries to
prune the number of hidden dimensions used in LSTM blocks. �e
dropout operation of other recurrent neural network architectures,
such as Gated Recurrent Unit (GRU), can be designed similarly.

3.2 Compressor Neural Network
Now we introduce the architecture of the compressor neural net-

work. As we described in Section 1, a hidden element in the original
neural network that is connected to redundant model parameters
should have a higher probability to be dropped. �erefore we design
the compressor neural network to take the weights of an original
neural network {W(l ) } as inputs, learn the redundancies among
these weights, and generate dropout probabilities {p(l ) } for hidden
elements that can be eventually used to compress the original neural
network structure.

A straightforward solution is to train an individual fully-
connected neural network for each layer in the original neural
network. However, since there are interconnections among weight
redundancies in di�erent layers, DeepIoT uses a variant LSTM as the
structure of compressor to share and use the parameter redundancy
information among di�erent layers.

According to the description in Section 3.1, the weight in layer
l of fully-connected, convolutional, or recurrent neural network

can all be represented as a single matrix W(l ) ∈ R
d (l )
f ×d

(l )
drop , where

d
(l )
drop denotes the dimension that dropout operation is applied and

d
(l )
f denotes the dimension of features within each dropout element.

Here, we need to notice that the weight matrix of LSTM at layer l
can be reshaped as W(l ) ∈ R4·(n (l−1)+n (l ) )×n (l ) , where d (l )drop = n(l )

and d
(l )
f = 4 · (n(l−1) + n(l ) ). Hence, we take weights from the

original network layer by layer, W =
{
W(l )

}
with l = 1, · · · ,L,

as the input of the compressor neural network. Instead of using a
vanilla LSTM as the structure of compressor, we apply a variant
l-step LSTM model shown as

*....
,

vᵀi
vᵀf
vᵀo
vᵀд

+////
-

=W(l )
c W(l )W(l )

i ,

*....
,

ui
uf
uo
uд

+////
-

=Whhl−1,

*....
,

i
f
o
g

+////
-

=

*....
,

sigm
sigm
sigm
tanh

+////
-

*....
,

*....
,

vi
vf
vo
vд

+////
-

+

*....
,

ui
uf
uo
uд

+////
-

+////
-

,

cl = f � cl−1 + i � g,

hl = o � tanh
(
cl

)
,

p(l ) = pt = sigm
(
W(l )

o hl
)
,

z(l )[j] ∼ Bernoulli(p(l )[j]).

(3)

Refer to (3), we denote dc as the dimension of the variant LSTM

hidden state. �en W(l ) ∈ R
d (l )
f ×d

(l )
drop , W(l )

c ∈ R
4×d (l )

f , W(l )
i ∈
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R
d (l )

drop×dc , Wh ∈ R
4dc×dc , and W(l )

o ∈ R
d (l )

drop×dc . �e set of training
parameters of the compressor neural network is denoted asϕ, where
ϕ =

{
W(l )

c ,W
(l )
i ,Wh ,W

(l )
o

}
. �e matrix W(l ) is the input matrix

for step l in the compressor neural network, which is also the l th
layer’s parameters of the original neural network in (1) or (2).

Compared with the vanilla LSTM that requires vectorizing the
original weight matrix as inputs, the variant LSTM model preserves
the structure of original weight matrix and uses less learning pa-
rameters to extract the redundancy information among the dropout
elements. In addition, W(l )

c and W(l )
i convert original weight matrix

W(l ) with di�erent sizes into �xed-size representations. �e binary
vector z(l ) is the dropout mask and probability p(l ) is the dropout
probabilities for the l th layer in the original neural network used
in (1) and (2), which is also the stochastic dropout policy learnt
through observing the weight redundancies of the original neural
network.

3.3 Compressor-Critic Framework
In Section 3.1 and Section 3.2, we have introduced customized

dropout operations applied on the original neural networks that
need to be compressed and the structure of compressor neural net-
work used to learn dropout probabilities based on parameter redun-
dancies. In this subsection, we will discuss the detail of compressor-
critic compressing process. It optimizes the original neural network
and the compressor neural network in an iterative manner and
enables the compressor neural network to gradually compress the
original neural network with so� deletion.

We denote the original neural network as FW (x|z), and we call
it critic. It takes x as inputs and generates predictions based on
binary dropout masks z and model parametersW that refer to a set
of weightsW = {W(l ) } . We assume that FW (x|z) is a pre-trained
model. We denote the compressor neural network by z ∼ µϕ (W ). It
takes the weights of the critic as inputs and generates the probability
distribution of the mask vector z based on its own parameters ϕ. In
order to optimize the compressor to drop out hidden elements in
the critic, DeepIoT follows the objective function

L = Ez∼µϕ

[
L
(
y, FW (x |z)

)]
=

∑
z∼{0,1} |z|

µϕ (W) · L
(
y, FW (x |z)

)
, (4)

where L(·, ·) is the objective function of the critic. �e objective
function can be interpreted as the expected loss of the original
neural network over the dropout probabilities generated by the
compressor.

DeepIoT optimizes the compressor and critic in an iterative man-
ner. It reduces the expected loss as de�ned in (4) by applying the
gradient descent method on compressor and critic iteratively. How-
ever, since there are discrete sampling operations, i.e., dropout
operations, within the computational graph, backpropagation is not
directly applicable. �erefore we apply an unbiased likelihood-ratio
estimator to calculate the gradient over ϕ [17, 36]:

∇ϕL =
∑
z
∇ϕ µϕ (W ) · L

(
y, FW (x |z)

)
=

∑
z
µϕ (W )∇ϕ log µϕ (W ) · L

(
y, FW (x |z)

)
= Ez∼µϕ

[
∇ϕ log µϕ (W ) · L

(
y, FW (x |z)

)]
.

(5)

�erefore an unbiased estimator for (5) can be
E∇ϕL = ∇ϕ log µϕ (W ) · L

(
y, FW (x |z)

)
z ∼ µϕ . (6)

�e gradient over W(l ) ∈ W is

∇W(l ) L =
∑
z
µϕ (W ) · ∇W(l )L

(
y, FW (x |z)

)
= Ez∼µϕ

[
∇W(l )L

(
y, FW (x |z)

)]
.

(7)

Similarly, an unbiased estimator for (7) can be
G∇W(l ) L = ∇W(l ) L

(
y, FW (x |z)

)
z ∼ µϕ . (8)

Now we provide more details of E∇ϕL in (6). Although the esti-
mator (6) is an unbiased estimator, it tends to have a higher variance.
A higher variance of estimator can make the convergence slower.
�erefore, variance reduction techniques are typically required to
make the optimization feasible in practice [21, 32].

One variance reduction technique is to subtract a constant c
from learning signal L

(
y, FW (x|z)

)
in (5), which still keeps the

expectation of the gradient unchanged [32]. �erefore, we keep
track of the moving average of the learning signal L

(
y, FW (x|z)

)
denoted by c , and subtract c from the gradient estimator (6).

�e other variance reduction technique is keeping track of the
moving average of the signal variance v , and divides the learning
signal by max(1,

√
v ) [21].

Combing the aforementioned two variance reduction techniques,
the �nal estimator (6) for gradient over ϕ becomes

E∇ϕL = ∇ϕ log µϕ (W ) ·
L
(
y, FW (x |z)

)
− c

max(1,
√
v )

z ∼ µϕ, (9)

where c and v are the moving average of mean and the moving
average of variance of learning signal L

(
y, FW (x|z)

)
respectively.

A�er introducing the basic optimization process in DeepIoT, now
we are ready to deliver the details of the compressing process. Com-
pared with previous compressing algorithms that gradually delete
weights without rehabilitation [24], DeepIoT applies “so�” deletion
by gradually suppressing the dropout probabilities of hidden ele-
ments with a decay factor γ ∈ (0, 1). During the experiments in
Section 5, we set γ as the default value 0.5. Since it is impossible
to make the optimal compression decisions from the beginning,
suppressing the dropout probabilities instead of deleting the hidden
elements directly can provide the “deleted” hidden elements changes
to recover. �is less aggressive compression process reduces the
potential risk of irretrievable network damage and learning ine�-
ciency.

During the compressing process, DeepIoT gradually increases
the threshold of dropout probability τ from 0 with step ∆. �e
hidden elements with dropout probability, p(l )[j] that is less than
the threshold τ will be given decay on dropout probability, i.e.,
p̂(l )[j] ← γ · p(l )[j]. �erefore, the operation in compressor (3) can be
updated as

z(l )[j] ∼ Bernoulli
(
p(l )[j] · γ

1p(l )[j]≤τ
)
, (10)

where 1 is the indicator function; γ ∈ (0, 1) is the decay factor;
and τ ∈ [0, 1) is the threshold. Since the operation of suppressing
dropout probability with the pre-de�ned decay factor γ is di�eren-
tiable, we can still optimize the original and the compressor neural
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Algorithm 1 Compressor-predictor compressing process
1: Input: pre-trained predictor FW (x |z)
2: Initialize: compressor µϕ (W ) with parameter ϕ , moving average c , moving

average of variance v
3: while µϕ (W ) is not convergent do
4: z ∼ µϕ (W )

5: c ← movingAvg
(
L
(
y, FW (x |z)

))
6: v ← movingVar

(
L
(
y, FW (x |z)

))
7: ϕ ← ϕ − β · ∇ϕ log µϕ (W ) ·

(
L
(
y, FW (x |z)

)
− c

)
/max(1,

√
v )

8: end while
9: τ = 0

10: while the percentage of le� number of parameters in FW (x |z) is larger than α
do

11: z ∼ µϕ (W )

12: c ← movingAvg
(
L
(
y, FW (x |z)

))
13: v ← movingVar

(
L
(
y, FW (x |z)

))
14: ϕ ← ϕ − β · ∇ϕ log µϕ (W ) ·

(
L
(
y, FW (x |z)

)
− c

)
/max(1,

√
v )

15: W ←W − β · ∇WL
(
y, FW (x |z)

)
16: update threshold τ : τ ← τ + ∆ for every T rounds
17: end while
18: ẑ(l )[j] = 1p

(l )
[j] > τ

19: while FW (x |ẑ) is not convergent do
20: W ←W − β · ∇WL

(
y, FW (x |ẑ)

)
21: end while

network through (8) and (9). �e compression process will stop
when the percentage of le� number of parameters in FW (x|z) is
smaller than a user-de�ned value α ∈ (0, 1).

A�er the compression, DeepIoT �ne-tunes the compressed model
FW (x|ẑ), with a �xed mask ẑ, which is decided by the previous
threshold τ . �erefore the mask generation step in (10) will be
updated as

ẑ(l )[j] = 1p
(l )
[j] > τ . (11)

We summarize the compressor-critic compressing process of
DeepIoT in Algorithm 1.

�e algorithm consists of three parts. In the �rst part (Line 3
to Line 8), DeepIoT freezes the critic FW (x|z) and initializes the
compressor µϕ (W ) according to (9). In the second part (Line 9
to Line 17), DeepIoT optimizes the critic and compressor jointly
with the gradients calculated by (8) and (9). At the same time,
DeepIoT gradually compresses the predictor by suppressing dropout
probabilities according to (10). In the �nal part (Line 18 to Line 21),
DeepIoT �ne-tunes the critic with the gradient calculated by (8) and
a deterministic dropout mask is generated according to (11). A�er
these three phases, DeepIoT generates a binary dropout mask ẑ and
the �ne-tuning parameters of the criticW . With these two results,
we can easily obtain the compressed model of the original neural
network.

4 IMPLEMENTATION
In this section, we brie�y describe the hardware, so�ware, archi-
tecture, and performance summary of DeepIoT.

4.1 Hardware
Our hardware is based on Intel Edison computing platform [1]. �e
Intel Edison computing platform is powered by the Intel Atom SoC
dual-core CPU at 500 MHz and is equipped with 1GB memory and
4GB �ash storage. For fairness, all neural network models are run
solely on CPU during experiments.

4.2 So�ware
All the original neural networks for all sensing applications men-
tioned in Section 5 are trained on the workstation with NVIDIA
GeForce GTX Titan X. For all baseline algorithms mentioned in
Section 5, the compressing processes are also conducted on the
workstation. �e compressed models are exported and loaded into
the �ash storage on Intel Edison for experiments.

We installed the Ubilinux operation system on Intel Edison com-
puting platform [2]. Far fairness, all compressed deep learning
models are run through �eano [48] with only CPU device on Intel
Edison. �e matrix multiplication operations and sparse matrix
multiplication operations are optimized by BLAS and Sparse BLAS
respectively during the implementation. No additional run-time
optimization is applied for any compressed model and in all experi-
ments.

4.3 Architecture
Given the original neural network structure and parameters as
well as the device resource information, DeepIoT can automatically
generate a compressed neural network that is ready to be run on
embedded devices with sensor inputs. �e system �rst obtains the
memory information from the embedded device and sets the �nal
compressed size of the neural network to �t in a pre-con�gured
fraction of available memory, from which the needed compression
ratio is computed. In the experiments, we manually set the ratio
to exploit the capability of DeepIoT. �is ratio, together with the
parameters of the original model are then used to automatically
generate the corresponding compressor neural network to com-
press the original neural network. �e resulting compressed neural
network is transferred to the embedded device. �is model can be
then called locally with a data input to decide on the output. �e
semantics of input and output are not known to the model.

4.4 Performance Summary
We list the resource consumption numbers of all compressed mod-
els without loss of accuracy generated by DeepIoT and their cor-
responding original model in Table 1 with the form of (origi-
nal/compressed/reduction percentage). �ese models are explained
in more detail in the evaluation, Section 5.

Table 1: Resource consumptions of model implementations
on Intel Edison

Model Size (MB) Time (ms) Energy (mJ)
LeNet5 1.72/0.04/97.6% 50.2/14.2/71.4% 47.1/12.5/73.5%

VGGNet 118.8/2.9/97.6% 1.5K/82.2/94.5% 1.7K/74/95.6%
Bi-LSTM 76.0/7.59/90.0% 71K/9.6K/86.5% 62.9K/8.1K/87.1%

DeepSense1 1.89/0.12/93.7% 130/36.7/71.8% 99.6/27.7/72.2%
DeepSense2 1.89/0.02/98.9% 130/25.1/80.7% 105.1/18.1/82.8%

Although the models generated by DeepIoT do not use sparse ma-
trix representations, other baseline algorithms, as will be introduced
in Section 5, may use sparse matrices to represent models. When
the proportion of non-zero elements in the sparse matrix is larger
than 20%, sparse matrix multiplications can even run slower than
their non-sparse counterpart. �erefore, there is a tradeo� between
memory consumption and execution time for sparse matrices with
a large proportion of non-zero elements. In addition, convolution
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operations conducted on CPU are also formulated and optimized as
matrix multiplications, as mentioned in Section 3.1. �erefore, the
tradeo� still exists. For all baseline algorithms in Section 5, we im-
plement both the sparse matrix version and the non-sparse matrix
version. During all the experiments with baseline algorithms, we
“cheat”, in their favor, by choosing the version that performs be�er
according to the current evaluation metrics.
5 EVALUATION
In this section, we evaluate DeepIoT through two sets of exper-

iments. �e �rst set is motivated by the prospect of enabling fu-
ture smarter embedded “things” (physical objects) to interact with
humans using user-friendly modalities such as visual cues, hand-
wri�en text, and speech commands, while the second evaluates
human-centric context sensing, such as human activity recogni-
tion and user identi�cation. In the following subsections, we �rst
describe the comparison baselines that are current state of the art
deep neural network compression techniques. We then present the
�rst set of experiments that demonstrate accuracy and resource de-
mands observed if IoT-style smart objects interacted with users via
natural human-centric modalities thanks to deep neural networks
compressed, for the resource-constrained hardware, with the help
of our DeepIoT framework. Finally, we present the second set of
experiments that demonstrate accurancy and resource demands
when applying DeepIoT to compress deep neural networks trained
for human-centric context sensing applications. In both cases, we
show signi�cant advantages in the accuracy/resource trade-o� over
the compared state-of-the-art compression baselines.
5.1 Baseline Algorithms
We compare DeepIoT with other three baseline algorithms:
(1) DyNS: �is is a magnitude-based network pruning algo-

rithm [22]. �e algorithm prunes weights in convolutional
kernels and fully-connected layer based on the magnitude. It re-
trains the network connections a�er each pruning step and has
the ability to recover the pruned weights. For convolutional and
fully-connected layers, DyNS searches the optimal thresholds
separately.

(2) SparseSep: �is is a sparse-coding and factorization based al-
gorithm [4]. �e algorithm simpli�es the fully-connected layer
by �nding the optimal code-book and code based on a sparse
coding technique. For the convolutional layer, the algorithm
compresses the model with matrix factorization methods. We
greedily search for the optimal code-book and factorizaiton
number from the bo�om to the top layer.

(3) DyNS-Ext: �e previous two algorithms mainly focus on com-
pressing convolutional and fully-connected layers. �erefore
we further enhance and extend the magnitude-based method
used in DyNS to recurrent layers and call this algorithm DyNS-
Ext. Just like DeepIoT, DyNS-Ext can be applied to all commonly
used deep network modules, including fully-connected layers,
convolutional layers, and recurrent layers. If the network struc-
ture does not contain recurrent layers, we apply DyNS instead
of DyNS-Ext.

For magnitude-based pruning algorithms, DyNS and DyNS-Ext,
hidden elements with zero input connections or zero output con-
nections will be pruned to further compress the network structure.
In addition, all models use 32-bit �oats without any quantization.

5.2 Supporting Human-Centric Interaction
Modalities

�ree basic interaction modalities among humans are text, vision,
and speech. In this section, we describe three di�erent experiments
that test implementations of these basic interaction modalities on
low-end devices using trained and compressed neural networks.
We train state-of-art neural networks on traditional benchmark
datasets as original models. �en, we compress the original models
using DeepIoT and the three baseline algorithms described above.
Finally, we test the accuracy and resource consumption that result
from using these compressed models on the embedded device.

5.2.1 Handwri�en digits recognition with LeNet5. �e �rst hu-
man interaction modality is recognizing handwri�en text. In this
experiment, we consider a meaningful subset of that; namely rec-
ognizing handwri�en digits from visual inputs. An example appli-
cation that uses this capability might be a smart wallet equipped
with a camera and a tip calculator. We use MNIST2 as our training
and testing dataset. �e MNIST is a dataset of handwri�en digits
that is commonly used for training various image processing sys-
tems. It has a training set of 60000 examples, and a test set of 10000
examples.

We test our algorithms and baselines on the LeNet-5 neural
network model. �e corresponding network structure is shown in
Table 2. Notice that we omit all the polling layers in Table 2 for
simplicity, because they do not contain training parameters.

�e �rst column of Table 2 represents the network structure of
LeNet-5, where “convX” represents the convolutional layer and “fcY”
represents the fully-connected layer. �e second column represents
the number of hidden units or convolutional kernels we used in
each layer. �e third column represents the number of parameters
used in each layer and in total. �e original LeNet-5 is trained and
achieves an error rate of 0.85% in the test dataset.

We then apply DeepIoT and two other baseline algorithms, DyNS
and SparseSep, to compress LeNet-5. Note that, we do not use DyNS-
Ext because the network does not contain a recurrent layer. �e
network statistics of the compressed model are shown in Table 2.
DeepIoT is designed to prune the number of hidden units for a
more e�cient network structure. �erefore, we illustrate both the
remaining number of hidden units and the proportion of the re-
maining number of parameters in Table 2. Both DeepIoT and DyNS
can signi�cantly compress the network without hurting the �nal
performance. SparseSep shows an acceptable drop of performance.
�is is because SparseSep is designed without �ne-tuning. It has
the bene�t of not �ne-tuning the model, but it su�ers the loss in
the �nal performance at the same time.

�e detailed tradeo� between testing accuracy and memory con-
sumption by the model is illustrated in Fig 2a. We compress the
original neural network with di�erent compression ratios and re-
code the �nal testing accuracy. In the zoom-in illustration, DeepIoT
achieves at least ×2 be�er tradeo� compared with the two baseline
methods. �is is mainly due to two reasons. One is that the compres-
sor neural network in DeepIoT obtains a global view of parameter
redundancies and is therefore be�er capable of eliminating them.
�e other is that DeepIoT prunes the hidden units directly, which

2h�p://yann.lecun.com/exdb/mnist/
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Table 2: LeNet5 on MNIST dataset

Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep
conv1 (5 × 5) 20 0.5K 10 50.0% 24.2% 84%
conv2 (5 × 5) 50 25K 20 20.0% 20.7% 91%

fc1 500 400K 10 0.8% 1.0% 78.75%
fc2 10 5K 10 2.0% 16.34% 70.28%

total 431K 1.98% 2.35% 72.39%
Test Error 0.85% 0.85% 0.85% 1.05%
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Figure 2: System performance tradeo� for LeNet5 on MNIST dataset

enables us to represent the compressed model parameters with a
small dense matrix instead of a large sparse matrix. �e sparse
matrix consumes more memory for the indices of matrix elements.
Algorithms such as DyNS generate models represented by sparse
matrices that cause larger memory consumption.

�e evaluation results on execution time of compressed models
on Intel Edison, are illustrated in Fig. 2b. We run each compressed
model on Intel Edison for 5000 times and use the mean value for
generating the tradeo� curves.

DeepIoT still achieves the best tradeo� compared with other two
baselines by a signi�cant margin. DeepIoT takes 14.2ms to make a
single inference, which reduces execution time by 71.4% compared
with the original network without loss of accuracy. However Spars-
eSep takes less execution time compared with DyNS at the cost of
acceptable performance degradation (around 0.2% degradation on
test error). �e main reason for this observation is that, even though
fully-connected layers occupy the most model parameters, most
execution time is used by the convolution operations. SparseSep
uses a matrix factorization method to covert the 2d convolutional
kernel into two 1d convolutional kernels on two di�erent dimen-
sions [47]. Although this method makes low-rank assumption on
convolutional kernel, it can speed up convolution operations if the
size of convolutional kernel is large (5 × 5 in this experiment). It
can sometimes speed up the operation even when two 1d kernels
have more parameters in total compared with the original 2d ker-
nel. However DyNS applies a magnitude-based method that prunes
most of the parameters in fully-connected layers. For convolutional
layers, DyNS does not reduce the number of convolutional opera-
tions e�ectively, and sparse matrix multiplication is less e�cient
compared with regular matrix with the same number of elements.
DeepIoT directly reduces the number of convolutional kernels in
each layer, which reduces the number of operations in convolutional

layers without making the low-rank assumption that can hurt the
network performance.

�e evaluation of energy consumption on Intel Edison is illus-
trated in Fig. 2c. For each compressed model, we run it for 5000
times and measure the total energy consumption by a power meter.
�en, we calculate the expected energy consumption for one-time
execution and use the one-time energy consumption to generate
the tradeo� curves in Fig. 2c.

Not surprisingly, DeepIoT still achieves the best tradeo� in the
evaluation on energy consumption by a signi�cant margin. It re-
duces energy consumption by 73.7% compared with the original
network without loss of accuracy. Being similar as the evaluation on
execution time, energy consumption focuses more on the number of
operations than the model size. �erefore, SparseSep can take less
energy consumption compared with DyNS at the cost of acceptable
loss on performance.

5.2.2 Image recognition with VGGNet. �e second human in-
teraction modality is through vision. During this experiment, we
use CIFAR103 as our training and testing dataset. �e CIFAR-10
dataset consists of 60000 32x32 colour images in 10 classes, with
6000 images per class. �ere are 50000 training images and 10000
test images. It is a standard testing benchmark dataset for the image
recognition tasks. While not necessarily representative of seeing
objects in the wild, it o�ers a more controlled environment for an
apples-to-apples comparison.

During this evaluation, we use the VGGNet structure as our
original network structure. It is a huge network with millions of
parameters. VGGNet is chosen to show that DeepIoT is able to
compress relative deep and large network structure. �e detailed
structure is shown Table 3.

3h�ps://www.kaggle.com/c/cifar-10
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Table 3: VGGNet on CIFAR-10 dataset
Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (3 × 3) 64 1.7K 27 42.2% 53.9% 93.1%
conv2 (3 × 3) 64 36.9K 47 31.0% 40.1% 57.3%
conv3 (3 × 3) 128 73.7K 53 30.4% 52.3% 85.1%
conv4 (3 × 3) 128 147.5K 68 22.0% 67.0% 56.8%
conv5 (3 × 3) 256 294.9K 104 21.6% 71.2% 85.1%
conv6 (3 × 3) 256 589.8K 97 15.4% 65.0% 56.8%
conv7 (3 × 3) 256 589.8K 89 13.2% 61.2% 56.8%
conv8 (3 × 3) 512 1.179M 122 8.3% 36.5% 85.2%
conv9 (3 × 3) 512 2.359M 95 4.4% 10.6% 56.8%
conv10 (3 × 3) 512 2.359M 64 2.3% 3.9% 56.8%
conv11 (2 × 2) 512 1.049M 128 3.1% 3.0% 85.2%
conv12 (2 × 2) 512 1.049M 112 5.5% 1.7% 85.2%
conv13 (2 × 2) 512 1.049M 149 6.4% 2.4% 85.2%

fc1 4096 2.097M 27 0.19% 2.2% 95.8%
fc2 4096 16.777M 371 0.06% 0.39% 135%
fc3 10 41K 10 9.1% 18.5% 90.2%

total 29.7M 2.44% 7.05% 112%
Test Accuracy 90.6% 90.6% 90.6% 87.1%
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Figure 3: System performance tradeo� for VGGNet on CIFAR-10 dataset

In Table 3, we illustrate the detailed statistics of best compressed
model that keeps the original testing accuracy for three algorithms.
We clearly see that DeepIoT beats the other two baseline algorithms
by a signi�cant margin. �is shows that the compressor in DeepIoT
can handle networks with relatively deep structure. �e compressor
uses a variant of the LSTM architecture to share the redundancy
information among di�erent layers. Compared with other baselines
considering only local information within each layer, sharing the
global information among layers helps us learn about the parameter
redundancy and compress the network structure. In addition, we
observe performance loss in the compressed network generated by
SparseSep. It is mainly due to the fact that SparseSep avoids the
�ne-tuning step. �is experiment shows that �ne-tuning (Line 18
to Line 21 in Algorithm 1) is important for model compression.

Fig. 3a shows the tradeo� between testing accuracy and mem-
ory consumption for di�erent models. DeepIoT achieves a be�er
performance by even a larger margin, because the model generated
by DeepIoT can still be represented by a standard matrix, while
other methods that use a sparse matrix representation require more
memory consumption.

Fig. 3b shows the tradeo� between testing accuracy and exe-
cution time for di�erent models. DeepIoT still achieves the best
tradeo�. DeepIoT takes 82.2ms for a prediction, which reduces
94.5% execution time without the loss of accuracy. Di�erent from
the experiment with LeNet-5 on MNIST, DyNS uses less execution

time compared with SparseSep in this experiment. �ere are two
reasons for this. One is that VGGNet use smaller convolutional
kernel compared with LeNet-5. �erefore factorizing 2d kernel
into two 1d kernel helps less on reducing computation time. �e
other point is that SparseSep fails to compress the original network
into a small size while keeping the original performance. As we
mentioned before, it is because SparseSep avoids the �ne-tuning.

Fig. 3c shows the tradeo� between testing accuracy and energy
consumption for di�erent models. DeepIoT reduces energy con-
sumption by 95.7% compared with the original VGGNet without
loss of accuracy. It greatly helps us to develop a long-standing appli-
cation with deep neural network in energy-constrained embedded
devices.

5.2.3 Speech recognition with deep Bidirectional LSTM. �e third
human interaction modality is speech. �e sensing system can take
the voices of users from the microphone and automatically convert
what users said into text. �e previous two experiments mainly
focus on the network structure with convolutional layers and fully-
connected layers. We see how DeepIoT and the baseline algorithms
work on the recurrent neural network in this section.

In this experiment, we use LibriSpeech ASR corpus [35] as our
training and testing dataset. �e LibriSpeech ASR corpus is a large-
scale corpus of read English speech. It consists of 460-hour training
data and 2-hour testing data.
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Table 4: Deep bidirectional LSTM on LibriSpeech ASR corpus
Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext

LSTMf1 LSTMb1 512 512 1.090M 1.090M 55 20 10.74% 3.91% 34.9% 18.2%
LSTMf2 LSTMb2 512 512 2.097M 2.097M 192 71 4.03% 0.54% 37.2% 23.1%
LSTMf3 LSTMb3 512 512 2.097M 2.097M 240 76 17.58% 2.06% 43.1% 27.9%
LSTMf4 LSTMb4 512 512 2.097M 2.097M 258 81 23.62% 2.35% 52.3% 40.2%
LSTMf5 LSTMb5 512 512 2.097M 2.097M 294 90 28.93% 2.78% 72.6% 61.8%

fc1 29 59.3K 29 37.5% 69.0%
total 19.016M 9.98% 37.1%

Word error rate (WER) 9.31 9.20 9.62
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Figure 4: System performance tradeo� for deep bidirectional LSTM on LibriSpeech ASR corpus

We choose deep bidirectional LSTM as the original model [20] in
this experiment. It takes mel frequency cepstral coe�cient (MFCC)
features of voices as inputs, and uses two 5-layer long short-term
memory (LSTM) in both forward and backward direction. �e
output of two LSTM are jointly used to predict the spoken text. �e
detailed network structure is shown in the �rst column of Table 4,
where “LSTMf” denotes the LSTM in forward direction and “LSTMb”
denotes the LSTM in backward direction.

Two baseline algorithms are not applicable to the recurrent neu-
ral network, so we compared DeepIoT only with SyNS-Ext in this
experiment. �e word error rate (WER), de�ned as the edit distance
between the true word sequence and the most probable word se-
quence predicted by the neural network, is used as the evaluation
metric for this experiment.

We show the detailed statistics of best compressed model that
keeps the original WER in Table 4. DeepIoT achieves a signi�cantly
be�er compression rate compared with DyNS-Ext, and the model
generated by DeepIoT even has a li�le improvement on WER. How-
ever, compared with the previous two examples on convolutional
neural network, DeepIoT fails to compress the model to less than
5% of the original parameters in the recurrent neural network case
(still a 20-fold reduction though). �e main reason is that compress-
ing recurrent networks needs to prune both the output dimension
and the hidden dimension. It has been shown that dropping hid-
den dimension can harm the network performance [57]. However
DeepIoT is still successful in compressing network to less than 10%
of parameters.

Fig. 4a shows the tradeo� between word error rate and memory
consumption by compressed models. DeepIoT achieves around ×7
be�er tradeo� compared with magnitude-based method, DyNS-Ext.
�is means compressing recurrent neural networks requires more
information about parameter redundancies within and among each
layer. Compression using only local information, such as magnitude
information, will cause degradation in the �nal performance.

Fig. 4b shows the tradeo� between word error rate and execution
time. DeepIoT reduces execution time by 86.4% without degradation
on WER compared with the original network. With the evaluation
on Intel Edision, the original network requires 71.15 seconds in
average to recognize one human speak voice example with the
average length of 7.43 seconds. �e compressed structure generated
by DeepIoT reduces the average execution time to 9.68 seconds
without performance loss, which improves responsiveness of human
voice recognition.

Fig. 4c shows the tradeo� between word error rate and energy
consumption. DeepIoT reduces energy by 87% compared with the
original network. It performs be�er than DyNS-Ext by a large
margin.

5.3 Supporting Human-Centric Context
Sensing

In addition to experiments about supporting basic human-centric
interaction modalities, we evaluate DeepIoT on several human-
centric context sensing applications. We compress the state-of-
the-art deep learning model, DeepSense, [56] for these problems
and evaluate the accuracy and other system performance for the
compressed networks. DeepSense contains all commonly used
modules, including convolutional, recurrent, and fully-connected
layers, which is also a good example to test the performance of
compression algorithms on the combination of di�erent types of
neural network modules.

Two human-centric context sensing tasks we consider are hetero-
geneous human activity recognition (HHAR) and user identi�cation
with biometric motion analysis (UserID). �e HHAR task recognizes
human activities with motion sensors, accelerometer and gyroscope.
“Heterogeneous” means that the task is focus on the generalization
ability with human who has not appeared in the training set. �e
UserID task identi�es users during a person’s daily activities such
as walking, running, siting, and standing.
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Table 5: Heterogeneous human activity recognition
Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext DyNS SparseSep

conv1a conv1b (2 × 9) 64 64 1.1K 1.1K 20 19 31.25% 29.69% 92% 95.7% 50.3% 60.0% 100% 100%
conv2a conv2b (1 × 3) 64 64 12.3K 12.3K 20 14 9.76% 6.49% 70.1% 77.7% 25.3% 40.5% 114% 114%
conv3a conv3b (1 × 3) 64 64 12.3K 12.3K 23 23 11.23% 7.86% 69.9% 66.2% 32.1% 35.4% 114% 114%

conv4 (2 × 8) 64 65.5K 10 5.61% 40.3% 20.4% 53.7%
conv5 (1 × 6) 64 24.6K 12 2.93% 27.2% 18.3% 100%
conv6 (1 × 4) 64 16.4K 17 4.98% 24.6% 12.0% 100%

gru1 120 227.5K 27 5.8% 1.2% 100% 100%
gru2 120 86.4K 31 6.24% 3.6% 100% 100%
fc1 6 0.7K 6 25.83% 98.6% 99% 70%

total 472.5K 6.16% 17.1% 74.5% 95.3%
Test Accuracy 94.6% 94.7% 94.6% 94.6% 93.7%

Table 6: User identi�cation with biometric motion analysis
Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext DyNS SparseSep

conv1a conv1b (2 × 9) 64 64 1.1K 1.1K 7 1 10.93% 1.56% 64.4% 75.5% 66.8% 65.6% 100% 100%
conv2a conv2b (1 × 3) 64 64 12.3K 12.3K 7 4 1.2% 0.1% 32.5% 34.7% 36.6% 48.0% 114% 114%
conv3a conv3b (1 × 3) 64 64 12.3K 12.3K 9 9 1.54% 0.88% 31.6% 28.6% 38.4% 43.5% 114% 114%

conv4 (2 × 8) 64 65.5K 7 1.54% 12.1% 29.2% 53.7%
conv5 (1 × 6) 64 24.6K 5 0.85% 21.0% 23.3% 100%
conv6 (1 × 4) 64 16.4K 7 0.85% 18.9% 16.0% 100%

gru1 120 227.5K 13 1.18% 0.42% 100% 100%
gru2 120 86.4K 9 0.69% 1.61% 100% 100%
fc1 9 1.1K 9 7.5% 89.6% 98% 88%

total 472.9K 1.13% 7.76% 77.0% 95.4%
Test Accuracy 99.6% 99.6% 99.6% 99.6% 98.8%
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Figure 5: System performance tradeo� for heterogeneous human activity recognition
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Figure 6: System performance tradeo� for user identi�cation with biometric motion analysis
In this evaluation section, we use the dataset collected by Al-

lan et al. [45]. �is dataset contains readings from two motion
sensors (accelerometer and gyroscope). Readings were recorded
when users execute activities scripted in no speci�c order, while
carrying smartwatches and smartphones. �e dataset contains 9

users, 6 activities (biking, si�ing, standing, walking, climbStairup,
and climbStair-down), and 6 types of mobile devices. For both tasks,
accelerometer and gyroscope measurements are model inputs. How-
ever, for HHAR tasks, activities are used as labels, and for UserID
tasks, users’ unique IDs are used as labels.



SenSys ’17, November 6–8, 2017, Del�, Netherlands Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher

�e original network structure of DeepSense is shown in the
�rst two columns of Table 5 and 6. Both tasks use a uni�ed neural
network structure as introduced in [56]. �e structure contains both
convolutional and recurrent layers. Since SparseSep and DyNS are
not directly applicable to recurrent layers, we keep the recurrent
layers unchanged while using them. In addition, we also compare
DeepIoT with DyNS-Ext in this experiment.

Table 5 and 6 illustrate the statistics of �nal pruned network gen-
erated by four algorithms that have no or acceptable degradation on
testing accuracy. DeepIoT is the best-performing algorithm consid-
ering the remaining number of network parameters. �is is mainly
due to the design of compressor network and compressor-critic
framework that jointly reduce the redundancies among parame-
ters while maintaining a global view across di�erent layers. DyNS
and SparseSep are two algorithms that can be only applied to the
fully-connected and convolutional layers in the original structure.
�erefore there exists a lower bound of the le� proportion of pa-
rameters, i.e., the number of parameters in recurrent layers. �is
lower bound is around 66%.

�e detailed tradeo�s between testing accuracy and memory con-
sumption by the models are illustrated in Fig. 5a and 6a. DeepIoT
still achieves the best tradeo� for sensing applications. Other than
the compressor neural network providing global parameter redun-
dancies, directly pruning hidden elements in each layer also enables
DeepIoT to obtain more concise representations in matrix form,
which results in less memory consumption.

�e tradeo�s between system execution time and testing accu-
racy are shown in Fig. 5b and 6b. DeepIoT uses the least execution
time when achieving the same testing accuracy compared with
three baselines. It takes 36.7ms and 25.1ms for a single prediction,
which reduces execution time by around 80.8% and 71.4% in UserID
and HHAR, respectively, without loss of accuracy. DyNS and DyNS-
Ext achieve be�er performance on time compared with SparseSep,
which is di�erent from the previous evaluations on LeNet-5. It is the
structure of the original neural network that causes this di�erence.
As shown in Table 5 and 6, the original network uses 1-d �lters in
its structure. �e matrix factorization based kernel compressing
method used in SparseSep cannot help to reduce or even increase
the parameter redundancies and the number of operations involved.
�erefore, there are constraints on the network structure when
applying matrix factorization based compression algorithm. In ad-
dition, SparseSep cannot be applied to the recurrent layers in the
network, which consumes a large proportion of operations during
running the neural network.

�e tradeo�s between energy consumption and testing accuracy
are shown in Fig. 5c and 6c. DeepIoT is the best-performing algo-
rithm for energy consumption. It reduces energy by around 83.3%
and 72.2% in UserID and HHAR without loss of accuracy. Due to
the aforementioned problem of SparseSep on 1-d �lter, redundant
factorization causes more execution time and energy consumption
in the experiment.

6 DISCUSSION
�is paper tries to apply state-of-the-art neural network models on
resource-constrained embedded and mobile devices by simplifying
network structure without hurting accuracy. Our solution, DeepIoT,

generates a simpli�ed network structure by deciding which ele-
ments to drop in each layer. �is whole process requires �ne-tuning
(Line 18 to Line 21 in Algorithm 1). However, we argue that the
�ne-tuning step should not be the obstacle in applying DeepIoT.
First, all the compressing and �ne-tuning steps are conducted on the
workstation instead of embedded and mobile devices. We can easily
apply the DeepIoT algorithm to compress and �ne-tune the neural
network ahead of time and then deploy the compressed model into
embedded and mobile devices without any run-time processing.
Second, the original training data must be easily accessible. De-
velopers who want to apply neural networks to solve their own
sensing problems will typically have access to their own datasets
to �ne-tune the model. For others, lots of large-scale datasets are
available online, such as vision [11] and audio [16] data. Hence, for
many categories of applications, �ne-tuning is feasible.

DeepIoT mainly focuses on structure pruning or weight pruning,
which is independent from other model compression methods such
as weight quantization [9, 10, 18, 23]. Although weight quantization
can compress the network complexity by using limited numerical
precision or clustering parameters, the compression ratio of quanti-
zation is usually less than the structure pruning methods. Weight
pruning and quantization are two non-con�icting methods. We can
apply weight quantization a�er the structure pruning step or a�er
any other compression algorithm. �is is out of the scope of this
paper. Also we do not exploit heterogeneous local device proces-
sors, such as DSPs [30], to speed up the running time during all the
experiments, because this paper focuses on structure compression
methods for deep neural networks instead of hardware speed-up.

7 CONCLUSION
In this paper, we described DeepIoT, a compression algorithm that
learns a more succinct network structure for sensing applications.
DeepIoT integrates the original network with dropout learning and
generates stochastic hidden elements in each layer. We also de-
scribed a novel compressor neural network to learn the parameter
redundancies and generate dropout probabilities for original net-
work layers. �e compressor neural network is optimized jointly
with the original neural network through the compressor-critic
framework. DeepIoT outperforms other baseline compression algo-
rithms by a signi�cant margin in all experiments. �e compressed
structure greatly reduces the resource consumption on sensing sys-
tem without hurting the performance, and makes a lot of the state-
of-the-art deep neural networks deployable on resource-constrained
embedded and mobile devices.
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